
MATH1050 Ordered pairs, ordered triples and cartesian products

1. Coordinate pairs and Cartesian plane in school mathematics.

In school mathematics, we take the notions of coordinate pairs and the Cartesian (coordinate) plane for granted:

• We fix a pair of mutually perpendicular straight lines in the ‘Euclidean plane’, each regarded as a copy of the real
line R. We call one of them the ‘x-axis’ and the other the ‘y-axis’, and call the intersection of the axes the origin.

• Then we represent each point, say, P , on the plane by a pair of uniquely determined real numbers, called the
‘x-coordinate’ and ‘y-coordinate’ of the point P . The x-coordinate Px of P is uniquely determined as the number
on the x-axis which is the intersection of the x-axis with the line passing through P and being perpendicular to
the x-axis. The y-coordinate Py of P is uniquely determined as the number on the y-axis which is the intersection

of the n-axis with the line passing through P and being perpendicular to the x-axis. We write P = (Px, Py).

• Now the plane may be regarded to be the same as the set {(x, y) | x ∈ R and y ∈ R}.
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This is then generalized to coordinate triples and the Cartesian (coordinate) space, and beyond.

Here we generalize the idea above in the context of set language.

2. Ordered-ness in set language.

Question. What is the essence in the notion of coordinate pairs in the plane?

The essence is contained in this statement below (which we have tacitly assumed since school mathematics):

• For any s, t, u, v ∈ R, ((s, t) = (u, v) iff (s = u and t = v)).

The bi-conditional ‘(s, t) = (u, v) iff (s = u and t = v)’ conveys the sense of ordered-ness. We are going to borrow it to

set language.

For the moment, we assume it makes sense to talk about the ordered pair (s, t) of any two given objects s, t and refer

to s, t as the first, second coordinates of the ordered pair (s, t). For the words ‘ordered’, ‘first’, ‘second’ to make any

sense, ‘(·, ·)’ has to obey Convention (♯) below:

(♯) For any objects x, y, u, v, ((x, y) = (u, v) then (x = u and y = v)).
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3. Cartesian product of two sets.

With this sense of ordered-ness in mind, it makes sense to define the notion of Cartesian product of two sets:

Definition.

Let A,B be sets. The cartesian product A × B of the sets A,B is defined to be the set {t | There exist some x ∈

A, y ∈ B such that t = (x, y)}.
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Remarks.

(1) According to convention on notations, we may simply write A×B = {(x, y) | x ∈ A and y ∈ B}.

(2) When A = B, we write A×B as A2.

Examples.

(a) {0, 1} × {2, 3, 4} = {(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)}.
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(b) R× R is the ‘coordinate plane’ R2 in school mathematics.
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4. Ordered pairs as set-theoretic objects.

Philosophical question. How to ‘make sense’ of the notion of ordered pairs in set language, in terms of objects already
introduced in set language?

Definition.

Let x, y be objects. The Kuratowski ordered pair of x, y, with x being the first coordinate and y being the second

coordinate, is defined to be the set {{x}, {x, y}}, and is denoted by (x, y)K .

That this definition is an appropriate one is justified by the validity of Lemma (OP) below:

Lemma (OP).

Let x, y, u, v be objects. (x, y)K = (u, v)K iff (x = u and y = v).

Proof. Exercise.

Remark. From now on, we write (x, y)K as (x, y).

Further remark. Is there another version of definition for the notion of ordered pairs?

Wiener’s version: (x, y)W = {{∅, {x}} , {{y}}}.

5. Ordered triples and beyond.

We define the notion for ordered triples in terms of ordered pairs.

Definition.

Let x, y, z be objects. We define the ordered triple of x, y, z, with first, second, third coordinates being x, y, z

respectively, to be ((x, y), z). We write it as (x, y, z).

That this definition is an appropriate one is justified by the validity of Lemma (OT) below:

Lemma (OT).

Let x, y, z, u, v, w be objects. (x, y, z) = (u, v, w) iff (x = u and y = v and z = w).

Proof. Exercise.

Remark. We may extend the idea in the definition for the notion of ordered triple so as to give the definition for
the notions of ordered quadruples, ordered quintuples et cetera.
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6. Theorem (∗). ( Set-theoretic properties of cartesian products.)

Let A,B,C,D be sets. The following statements hold:

(1) (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D).

(A ∩B)× (C ∩D) = (A×D) ∩ (B × C).

(2) (A ∪B)× C = (A× C) ∪ (B × C).

A× (C ∪D) = (A× C) ∪ (A×D).

(3) Suppose A ⊂ B and C ⊂ D. Then A× C ⊂ B ×D.

(4) Suppose A 6= ∅, A ⊂ B and A× C ⊂ B ×D. Then C ⊂ D.

(5) A× ∅ = ∅. ∅ ×A = ∅.

Proof of the first equality in Statement (1) of Theorem (∗).

Let A,B,C,D be sets.

• Pick any object t. Suppose t ∈ (A ∩B)× (C ∩D).

By the definition of Cartesian product, there exist some x ∈ A ∩B, y ∈ C ∩D such that t = (x, y).

In particular, x ∈ A ∩B. Since A ∩B ⊂ A, we have x ∈ A.

Similarly, y ∈ C ∩D ⊂ C.

Now x ∈ A and y ∈ C. Therefore t = (x, y) ∈ A× C by the definition of Cartesian product.

Modifying the above argument, we also deduce that t ∈ B ×D.

Now we have t ∈ A× C and t ∈ B ×D.

Therefore t ∈ (A× C) ∩ (B ×D) by the definition of intersection.

• Pick any object t. Suppose t ∈ (A× C) ∩ (B ×D).

Then t ∈ A× C and t ∈ B ×D by the definition of intersection.

In particular t ∈ A× C.

By the definition of Cartesian product, there exist some x ∈ A, y ∈ C such that t = (x, y).

Recall that t ∈ B ×D also. There exist some x′ ∈ B, y′ ∈ D such that t = (x′, y′).

We have (x, y) = t = (x′, y′). Then (x = x′ and y = y′). Therefore x ∈ B and y ∈ D.

Now we have x ∈ A and x ∈ B. Therefore x ∈ A ∩B by the definition of intersection.

We also have y ∈ C and y ∈ D. Then y ∈ C ∩D.

Therefore t = (x, y) ∈ (A ∩B)× (C ∩D) by the definition of Cartesian product.

It follows that (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D).

Proof of Statement (3) of Theorem (∗).

Let A,B,C,D be sets. Suppose A ⊂ B and C ⊂ D.

Pick any object t. Suppose t ∈ A× C. Then there exist some x ∈ A, y ∈ C such that t = (x, y).

Since x ∈ A and A ⊂ B, we have x ∈ B. Since y ∈ C and C ⊂ D, we have y ∈ D.

Then t = (x, y) ∈ B ×D.

It follows that A× C ⊂ B ×D.
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