
MATH1050 Handout: Notion of functions and its pictorial visualizations

1. Real-valued functions of one real variable in school mathematics.
Below is a typical ‘explanation’ of the notion of real valued functions of one real variable in school mathematics:

Let D be a subset of R (very often R itself or R with a few points deleted). A real-valued function defined on D
is a ‘rule of assignment’ from D to R, so that each number in D is being assigned to exactly one element of R.
When we refer to such a function by f , the set D will be referred to as the domain of this function f .
Whenever x ∈ D, y ∈ R and x is assigned to y, we write y = f(x).
The set G = {(x, f(x)) | x ∈ D} will be called the graph of f . Note that G ⊂ R2.

2. In-formal definition of function.
Let A,B be sets. A function from A to B is a ‘rule of assignment’ from A to B, so that each element of A is being
assigned to exactly one element of B.
Conventions and notations.

• When we denote such a function by f , we refer to it as f : A −→ B. Whenever x ∈ A, y ∈ B and x is assigned
to y, we write y = f(x) (or x 7→

f
y).

• A is called the domain of f . B is called the range of f .

Remark. We postpone the generalization of the notion of graphs of functions.

3. ‘Blobs-and-arrows diagrams’.
We may visualize a function by its ‘blobs-and-arrows diagram’.
We illustrate the idea with the example below:
Let A = {m,n, p, q, r, s, t, ...}, B = {c, d, e, g, h, ...}, and f : A −→ B be defined by

f(m) = d, f(n) = e, f(p) = e, f(q) = h, f(r) = h, f(s) = h, f(t) = h, · · · .

By definition, f assigns m to d, n to e, p to e, q to h, r to h, s to h, t to h, · · · .
We draw the ‘blobs-and-arrows diagram’ of the function f as:
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4. Notion of equality for functions.
We regard two functions to be the same as each other exactly when they ‘determine the same assignment’.
Definition.
Let A1, A2, B1, B2 be sets, and f1 : A1 −→ B1, f2 : A2 −→ B2 be functions.
We agree to say that f1 is equal to f2 as functions, and to write f1 = f2, exactly when A1 = A2 and B1 = B2 and
f1(x) = f2(x) for any x ∈ A1.

5. Compositions.
Out of two functions, the range of one being the same as the domain of the other, we may construct a third function.
Definition.
Let A,B,C be sets, and f : A −→ B, g : B −→ C be functions.
Define the function g ◦ f : A −→ C by (g ◦ f)(x) = g(f(x)) for any x ∈ A.
g ◦ f is called the composition of the functions f , g.
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Lemma (1). (Associativity of composition.)
Let A,B,C,D be sets, and f : A −→ B, g : B −→ C, h : C −→ D be functions. (h ◦ g) ◦ f = h ◦ (g ◦ f) as functions.
Remark. Hence there is no ambiguity when we refer to (h ◦ g) ◦ f (and h ◦ (g ◦ f)) as h ◦ g ◦ f .
Proof of Lemma (1).
Let A,B,C,D be sets, and f : A −→ B, g : B −→ C, h : C −→ D be functions.
Note that (h ◦ g) ◦ f , h ◦ (g ◦ f) have the same domain, namely, A.
Also note that (h ◦ g) ◦ f , h ◦ (g ◦ f) have the same range, namely, D.
[We want to verify: For any x ∈ A, ((h ◦ g) ◦ f)(x) = (h ◦ (g ◦ f))(x).]
Pick any x ∈ A. ((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x))) = h((g ◦ f)(x)) = (h ◦ (g ◦ f))(x).
It follows that (h ◦ g) ◦ f = h ◦ (g ◦ f) as functions.
Warning. Suppose A,B are sets and f : A −→ B, g : B −→ A are functions. Then it makes sense to construct
the functions g ◦ f , f ◦ g. However, g ◦ f , f ◦ g are not necessarily equal to each other. Even when A = B, these two
functions g ◦ f , f ◦ g are still not necessarily equal to each other.

6. Identity function, inclusion function, restrictions and extensions.
Here are the formal definitions (in terms of set language) of several miscellaneous notions used in various occasions.
Definition.
Let A be a set.

(a) Define the function idA : A −→ A by idA(x) = x for any x ∈ A. idA is called the identity function on A.

(b) Let S be a subset of A. Define the function ιAS : S −→ A by ιAS (x) = x for any x ∈ S. ιAS is called the inclusion
function of S into A.

Definition.
Let A,B be sets, and f : A −→ B be a function.

(a) Let S be a subset of A.
The function f ◦ ιAS : S −→ B is called the restriction of f to S. It is denoted by f |S .

(b) Let H be a set which contains A as a subset, K be a set which contains B as a subset.
Suppose g : H −→ K be a function which satisfies g ◦ ιHA = ιKB ◦ f . Then g is called an extension of f .

7. Graphs of functions.
To generalize the notion of graphs of functions, we need bring in the notion of cartesian products for two arbitrary
sets.
Definition.
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Let A,B be sets, and f : A −→ B be a function. Define G = {(x, f(x)) | x ∈ A}.
G is called the graph of the function f . Note that G ⊂ A×B.
Lemma (2). (Equality of functions and equality of graphs.)
Let A,B be sets, and f1, f2 : A −→ B be functions. Suppose G1, G2 are the respective graphs of f1, f2. Then f1 is
equal to f2 as functions iff G1 = G2.
Proof of Lemma (2). Exercise in set language.

8. ‘Coordinate plane diagrams’.
We may visualize a function, displaying its graph, by its ‘coordinate plane diagram’.
We illustrate the idea with the example below:
Let A = {m,n, p, q, r, s, t, ...}, B = {c, d, e, g, h, ...}, and f : A −→ B be defined by

f(m) = d, f(n) = e, f(p) = e, f(q) = h, f(r) = h, f(s) = h, f(t) = h, · · · .

By definition, the graph of f is the set G = {(m, d), (n, e), (p, e), (q, h), (r, h), (s, h), (t, h), · · · }.
We draw the ‘coordinate plane diagram’ of the function f as:
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9. ‘Blobs-and-arrows diagram’ versus ‘coordinate plane diagram’.
Depending on how we like the ‘information’ concerned with a given function f : A −→ B is presented, we may draw
its ‘coordinate plane diagram’ or its ‘blobs-and-arrows diagram’. Each has its own advantage.

• In the ‘coordinate plane diagram’, the graph of f is displayed.
• In the ‘blobs-and-arrows diagram’, the visual picture of f as a ‘rule of assignment’ is emphasized.

The two diagrams may be converted from one to the other in a systematic way. We illustrate the idea with the
example below:
Let A = {m,n, p, q, r, s, t, ...}, B = {c, d, e, g, h, ...}, and f : A −→ B be defined by

f(m) = d, f(n) = e, f(p) = e, f(q) = h, f(r) = h, f(s) = h, f(t) = h, · · · .

By definition, f assigns m to d, n to e, p to e, q to h, r to h, s to h, t to h, · · · .
The graph of f is the set G = {(m, d), (n, e), (p, e), (q, h), (r, h), (s, h), (t, h), · · · }.

(a) ‘Coordinate plane diagram’ of f :
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(b) In-between the two kinds of diagrams:
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(c) ‘Blobs-and-arrows diagram’ of f :
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10. Basic examples of functions in school maths and beyond.
We have encountered various examples of functions in school mathematics and in basic MATH courses.

(a) Polynomial functions with real coefficients.
Such functions are: the zero function; non-zero constant functions; linear functions; quadratic (polynomial)
functions; cubic functions; et cetera.

• Suppose n ∈ N, and a0, a1, a2, · · · , an ∈ R, with an 6= 0.
The polynomial function naturally defined by the degree-n polynomial anxn + · · · + a2x

2 + a1x + a0 with
indeterminate x is the function with domain and range both being R and which assigns each real number c
to the real number ancn + · · ·+ a2c

2 + a1c+ a0.
When we refer to the polynomial as p(x), we will usually also choose to refer to the polynomial function
thus defined as p. When we refer to the polynomial function as p, we will also refer to the polynomial itself
as p(x).
In school maths we very often deliberately confuse the polynomial expression p(x) with the function p.

But we have to be careful from now on. When we talk about a function, we have to clarify its domain and its
range.

(b) Rational functions with real coefficients.
Such a function is one whose ‘formula of definition’ is given by a fraction whose numerator and denominator are
both polynomial with one indeterminate and with real coefficients. Its range is R, and its domain is R\Z, in
which Z is the set of real roots of the polynomial in the denominator of the fraction.
Polynomial functions are regarded as rational functions.
In school maths we very often deliberately confuse the rational function with the fraction of the polynomials
which defines the function. But from now on, we have to be more careful.

(c) ‘Algebraic functions’ in school maths.
An explicit ‘algebraic function’ is one whose ‘formula of definition’ is obtained from polynomials upon ‘finitely
many’ operations with +,−,×,÷ and taking surds. Its domain is likely to be an interval, or a ‘disjoint union’ of
several intervals. Its range is R.
Rational functions are regarded as explicit ‘algebraic functions’.
But there are implicit ‘algebraic function’ as well: they are the functions ‘implicitly defined’ by polynomial
equations with two unknowns, say, x, y with real coefficients. You have already encountered such objects when
you learnt ‘implicit differentiation’ in calculus of one real variable.

(d) Elementary transcendental functions.
These are exp, ln, cos, sin, tan, sec, csc, cot, and other functions which can be obtained from them upon ‘finitely
many’ operations with +,−,×,÷ and taking surds.
The domain of such a function is usually an interval or a ‘disjoint union’ of several intervals. Its range is R.
You learnt calculus at school because these functions are not easy to study with purely algebraic means.
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(e) ‘Multivariable functions’ in multivariable calculus.
In your advanced calculus courses, you encounter ‘Rm-valued functions of n real variables’: functions from D ⊂ Rn

to Rm. Here D is usually a ‘nice’ subset of Rn.
(f) Functions of one complex variable.

In your complex variables course, you will encounter ‘complex-valued functions of one complex variable’. Such a
function has range C. Its domain is usually a ‘nice’ subset of C, in the sense that it is open in C and connected.
Basic examples of such ‘complex-valued functions of one complex variable’ are:

• polynomial functions with complex coefficients, whose ‘formulae of definition’ are polynomials with complex
coefficients,

• rational functions with complex coefficients, whose ‘formulae of definition’ are fractions of polynomials with
complex coefficients, and

• elementary transcendental functions exp, ln, cos, sin, tan, sec, csc, cot et cetera.
(g) Infinite sequences and families.

An infinite sequence of real numbers, say, {an}∞n=0 can be thought as a function whose domain and range are N

and R respectively, and which assigns each natural number n to the real number an.
The idea can be extended to the notion of infinite sequences in an arbitrary set and further to the notion of
‘family’.

(h) ‘Algebraic operations’ for algebraic structures.
In your algebra course, you will encounter various ‘algebraic operations’. They are functions with special prop-
erties which give rise to various ‘algebraic structures’.
The prototype of these ‘algebraic operations’ are the ‘arithmetic operations’ addition, subtraction, multiplication,
division in school maths. Below are some examples:

i. ‘Addition’ for natural numbers can be regarded as the function whose domain is N2 and whose range is N,
assigning each ordered pair of natural numbers (x, y) to the sum x+ y.

ii. ‘Multiplication’ for real numbers can be regarded as the function whose domain is R2 and whose range is R,
assigning each ordered pair of real numbers (x, y) to the sum x× y.

iii. ‘Conjugation’ for complex numbers can be regarded as the function whose domain is C and whose range is
C, assigning each complex number ζ to its complex conjugate ζ̄.

For more detail, refer to the handout Abelian groups, integral domains and fields.
(i) Linear transformations and ‘transformation for various algebraic structures’.

The mathematical objects under consideration in your linear algebra course are vector spaces and linear trans-
formations.
A linear transformation is a function whose domain and range are vector spaces and which ‘preserves’ ‘linear
structure’.
The prototype of linear transformations is the operation ‘matrix multiplication to column vectors from the left’:

• Suppose A is an (m× n)-matrix with real entries. Define the function LA : Rn −→ Rm by LA(x) = Ax for
any x ∈ Rn. The function LA is called the linear transformation defined by matrix multiplication from the
left by A.
It ‘preserves’ ‘linear structure’ in the sense that if a certain linear relation for a collection of vectors in the
domain Rn holds, then the corresponding linear relation in Rm resultant from replacing the vectors in Rn

by their respective images in Rm under LA will hold as well.
For more detail, refer to the handout Linear algebra beyond matrices and vectors.
Similar ideas (about ‘structure-preserving functions’) will be employed in the study of various algebraic structures
in your algebra courses.

(j) Various ‘operations’ in calculus and beyond.
Differentiation and integration can be thought of as functions.
Here are three simple examples:
For each interval J , denote by C1(J) the set of all continuously differentiable functions on J and C(J) the set
of all continuous function on J .

i. Let a, b ∈ R. Suppose a < b. Differentiation assigns each continuously differentiable function φ on the open
interval (a, b) to its derivative φ′. Note that φ′ is a continuous function on (a, b).
Hence this ‘operation’ defines the function D from C1((a, b)) to C((a, b)) by D(φ) = φ′ for any φ ∈
C1((a, b)).
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ii. Let a, b ∈ R. Definite integration with lower limit a and upper limit b assigns each continuous function ψ on

the interval [a, b] to the number
∫ b

a

ψ.

Hence this ‘operation’ defines the function Iba from C([a, b]) to R by Iba(ψ) =
∫ b

a

ψ for any ψ ∈ C([a, b]).

iii. Let a ∈ R. According to the Fundamental Theorem of the Calculus, definite integration with lower limit a
assigns each continuous function ψ on R to its primitive on R which vanishes at a.

Hence this ‘operation’ defines the function Ia from C(R) to C1(R) by (Ia(ψ))(x) =

∫ x

a

ψ for any ψ ∈ C(R)

for any x ∈ R.
This viewpoint in seeing differentiation, integration et cetera is useful in some advanced courses.
(Laplace transforms and Fourier transforms can also be seen in this light.)

11. Families.
The notion of infinite sequences of real numbers can be generalized to the notion of families for collections of objects.
Definition.
Suppose I,B are sets, and φ : I −→ B is a function.
Then we say φ is a family in B, indexed by I.
The set I is referred to as the index set for this family, and the set {x ∈ B : x = φ(t) for some t ∈ I} is called the
set of all terms for this family.
Remarks.

(a) This definition generalizes the notion of infinite sequences of real numbers. When I = N, a family in B is just
an infinite sequence in B; when furthermore B = R, it is just an infinite sequence of real numbers.

(b) We imitate the notations for infinite sequences when we regard the function φ from I to B as a family in B with
index set I. We suppress the symbols φ, B, and present this family as, say, {xα}α∈I , in which the symbol xα
stands for φ(α) for each α ∈ I.

(c) What is the point of this definition?
It gives us the flexibility to regard the same family in B, say, {xα}α∈I , as a family in C which contains B as a
subset, whenever it is convenient for us to do so.

Examples.

(a) {(−∞, u)}u∈R stands for the function with domain R and range, say, the set of all intervals, assigning each real
number u to the open interval (−∞, u).

(b) {(−|a|, |a|+1)}a∈Q stands for the function with domain Q and range, say, the set of all intervals, assigning each
rational number a to the open interval (−|a|, |a|+ 1).

(c) Let p, q be real numbers.
For any real numbers a, b, not both zero, define ℓ(a,b) by ℓ(a,b) = {(x, y) | x, y ∈ R and a(x− p) + b(y − q) = 0}.
ℓ(a,b) is the line in the infinite plane whose equation is given by ax+ by = ap+ bq.
{ℓ(a,b)}(a,b)∈R2\{(0,0)} stands for the function with domain R2\{(0, 0)} and range, say, the set of all lines in the
infinite plane, assigning each (a, b) ∈ R2\{(0, 0)} to the line ℓ(a,b).
(The set of all terms of this family is the pencil of all lines passing through (p, q).)

(d) Let a, b, c be real numbers, not all zero.
For any real number d, define πd by πd = {(x, y, z) | x, y, z ∈ R and ax+ by + cz = d}.
πd is the plane in the infinite space whose equation is given by ax+ by + cz = d.
{πd}d∈R stands for the function with domain R and range, say, the set of all planes in the infinite space, assigning
each d ∈ R to the plane πd.
(The set of all terms of this family is the pencil of planes all parallel to the plane ax+ by + cz = 0.)

(e) For each complex number p, for each positive real number r, define C(ζ, r) = {z ∈ C : |z − p| = r}. (C(ζ, r) is
the circle in the Argand plane with centre p and radius r.)
Let p ∈ C.
{C(p, r)}r∈(0,+∞) stands for the function with domain (0,+∞) and range, say, the set of all circles in the Argand
plane, assigning each positive real number to the circle C(p, r).
(The set of all terms of this family is the pencil of circles concentric at p.)
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(f) For each complex number p, for each positive real number r, define D(ζ, r) = {z ∈ C : |z − p| < r}. (D(ζ, r) is
the ‘open disc’ in the Argand plane with centre p and radius r.)
{D(r, r)}r∈(0,+∞) stands for the function with domain (0,+∞) and range, say, the set of all open discs in the
Argand plane, assigning each positive real number to the open disc D(r, r).

(g) For each real number α, define the polynomial function fα : R −→ R by fα(x) = x2 + αx+ 1 for any x ∈ R.
{fα}α∈R stands for the function with domain R and range, say, the set of all polynomial functions, assigning
each real number α to fα.

12. Set operations for families of sets.
The notion of intersection and union for infinite sequences of sets, introduced in the Handout Universal quantifier
and existential quantifier, can be immediately generalized to families of sets.
Definition.
Let M, I be sets, and {Sα}α∈I be a family of subsets of the set M , indexed by I. (For any α ∈ I, Sα is a subset of
M .)

(1) The intersection of the family of subsets {Sα}α∈I of the set M is defined to be the set {x ∈ M : x ∈
Sα for any α ∈ I}. It is denoted by

∩
α∈I

Sα.

(2) The union of the family of subsets {Sα}α∈I of the set M is defined to be the set {x ∈ M : x ∈
Sα for some α ∈ I}. It is denoted by

∪
α∈I

Sα.

Remark. Suppose C is a subset of P(M), and we ‘index’ C by its elements to obtain the family {S}S∈C . Then
the intersection of the set C of subsets of the set M is the intersection of the family {S}S∈C , and the union of the set
C of subsets of the set M is the union of the family {S}S∈C .

13. Theorem (⋆) in the Handout Universal quantifier and existential quantifier can be generalized immediately to Theorem
(⋆′) below. The proofs of the respective statements are similar.
Theorem (⋆′).
Let M, I be sets and {Aα}α∈I be a family of subsets of M , indexed by I.

(0) Suppose I = ∅. Then
∩
α∈I

Aα =M and
∪
α∈I

Aα = ∅.

(1) Let S be a subset of M . Suppose S ⊂ Aα for any α ∈ I. Then S ⊂
∩
α∈I

Aα.

(2) Let S be a subset of M . Suppose S ⊂ Aα for some α ∈ I. Then S ⊂
∪
α∈I

Aα.

(3) Let T be a subset of M . Suppose Aα ⊂ T for any α ∈ I. Then
∪
α∈I

Aα ⊂ T .

(4) Let T be a subset of M . Suppose Aα ⊂ T for some α ∈ I. Then
∩
α∈I

Aα ⊂ T .

(5) Let C be a subset of M . ({Aα ∪ C}α∈I , {Aα ∩ C}α∈I , {Aα\C}α∈I , {C\Aα}α∈I are families of subsets of M .)
The equalities below hold:

(5a)
(∩

α∈I

Aα

)
∩ C =

∩
α∈I

(Aα ∩ C).

(5b)
(∪

α∈I

Aα

)
∪ C =

∪
α∈I

(Aα ∪ C).

(5c)
(∩

α∈I

Aα

)
∪ C =

∩
α∈I

(Aα ∪ C).

(5d)
(∪

α∈I

Aα

)
∩ C =

∪
α∈I

(Aα ∩ C).

(5e)
(∩

α∈I

Aα

)
\C =

∩
α∈I

(Aα\C).

(5f)
(∪

α∈I

Aα

)
\C =

∪
α∈I

(Aα\C).

(5g) C\

(∩
α∈I

Aα

)
=
∪
α∈I

(C\Aα).

(5h) C\

(∪
α∈I

Aα

)
=
∩
α∈I

(C\Aα).
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