1. Real-valued functions of one real variable in school mathematics.

Below is a typical ‘explanation’ of the notion of real valued functions of one real variable
in school mathematics:

Let D be a subset of R (very often R itself or R with a few points deleted).

A real-valued function defined on D is a ‘rule of assignment’ from D to R, so that
each number in D is being assigned to exactly one element of IR.

When we refer to such a function by f, the set D will be referred to as the domain of this
function f.

Whenever x € D, y € R and x is assigned to y, we write y = f(x).

The set G = {(z, f(x)) | x € D} is called the graph of f. Note that G C IR*.



How about ‘general’ functions?
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A realvalued function defined-on is a ‘rule of assignment’ from K to )I{ so that
each-numberinD is being assigned to exactly one element of K.

When we refer to such a function by f, the set )?( will be referred to as the domain
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Whenever x € B{, y € K and z is assigned to y, we write y = f(x).

The set G = {(z, f(z)) | z € D} is called the graph of f. Note that G C IR,
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. In-formal definition of function.
Let A, B be sets.

A function from A to B is a ‘rule of assignment’ from A to B, so that

each element of A is being assigned to exactly one element of B.

Conventions and notations.

« When we denote such a function by f, we refer toit as f: A — B.

Whenever x € A, y € B and z is assigned to y, we write y = f(x) (or :Ul?y)

« A is called the domain of f. B is called the range of f.

Remark. We postpone the generalization of the notion of graphs of functions.



3. ‘Blobs-and-arrows diagrams’.

We may visualize a function by its ‘blobs-and-arrows diagram’.

We illustr_ate the idea with the example below:

Let A={m,n,p,q,r,s,t,..}, B={c,d,e qg,h,..}, and f : A — B be defined by
f(m) :d7f(n) :eaf(p) :€7f<Q) :h,f('f’> :h7f<8> :h7f<t) :h7 .

By definition, f assigns m to d, n toe, p toe, q toh,r toh, s toh,ttoh,---.

We draw the ‘blobs-and-arrows diagram’ of the function f as:
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4. Notion of equality for functions.

We regard two functions to be the same as each other exactly when they ‘determine the
same assignment’.

Definition.
Let Al, AQ, Bl, By be sets, and f1 : Al g Bl, f2 " AQ — BQ be functions.

We agree to say that fi is equal to fo as functions, and to write fi = fo, exactly when

A, = Ay and By = By and fi(z) = fo(z) for any x € A;.

Fxamplon - Q/!(a/r\Flg/)‘ ] -
@ f‘ : TR\SJI ~—>R>S\\re»\(77 | @ S' : R%nggmé}z @ L': R%R‘33W(7

-l 1t x<o0
-f‘(x): %+ | jcw w.7xe ﬂi\{tf). ‘ &'(K)\—X._H fwo,7 KG{RJ \"'m:iq ’éx>03
C RS > Risques 3, (R\%:Z.eﬂi}s g by h, i%_ﬂ{_isgwtj

1, R > Regeen by (092 o e T, A

o Xl ‘ 1 Hfxzo
‘fb() X —| ‘§°VM7 XK€ /R\M ’ -—}v-e/ g‘/S‘ @Lw{faeacﬁﬁf’/ﬂ ,A..@L\ L %xi
e 4 el o o2 | No G et b))

, ’ $3: R=>C 7 givew 1o No, (Ressn:

Teo. 4300 = x| 7“01%7’}67{% Formdie 4o

-Ne 81, ¢ el encl Sher oqree , v Ao,

o No, (Recan; Rorges dy il agru/.) X O. )




5. Compositions.

Out of two functions, the range of one being the same as the domain of the other, we may

construct a third function
Definition.

Let A, B,C besets, and f : A— B, g : B — C be functions.

Define the function go f : A — C by (g o f)(z) = g(f(x)) for any x € A.

~go f is called the composition of the functions f, g.
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Lemma (1). (Associativity of composition.)
Let A, B,C, D be sets, and

f:A—B, ¢g:B—C, h:C—D

be functions.
(hog)o f=ho(go f) as functions.

Remark. Hence there is no ambiguity when we refer to (ho g)o f (and ho (go f)) as
hogo f.

Proof of Lemma (1).
Let A, B,C,D besets,and f :A— B, g: B— C, h: C — D be functions.
Note that (ho g)o f, ho (go f) have the same domain, namely, A.
Also note that (ho g) o f, ho(go f) have the same range, namely, D.
[We want to verily: For any z € A, (ho g)o f)(x)=(ho(go f))(z)]
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6. Identity function, inclusion function, restrictions and extensions.

Here are the formal definitions (in terms of set language) of several miscellaneous notions

used in various ocassions.

Definition.

Let A be a set.

(a) Define the function idy : A — A by ida(z) = z for any x € A. idy Is called the
identity function on A.

(b) Let S be a subset of A. Define the function 14 S — Abyf(z) =z forany z € S.

Lé is called the inclusion function of S into A.
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Definition.

Let A, B be scts,-and f : A — B be a function.

(a) Let S be a subset of A. The function f o 14 - S — B is called the restriction of f
to S. It is denoted by f|s. |

(b) Let H be a set which contains A as a subset, K be a set which contains B as a subset.
Suppose g : H — K be a function which satisfies g o I,i] = Jg o f. Then g is called an

extension of f.
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7. Graphs of functions.

To generalize the notion of graphs of functions, we need bring in the notion of cartesian

products for two arbitrary sets.

Definition.

Let A, B be sets, and f : A — B be a function. Define G = {(z, f(x)) | v € A}.
(G is called the graph of the function f. Note that G C A x B.

Lemma (2). (Equality of functions and equality of graphs.)

Let A, B be sets, and f1, fo : A —> B be functions. Suppose G1, Gy are the respective
graphs of f1, fo. Then fi is equal to fy as functions ifft G1 = Gb.

Proof of Lemma (2). Exercise in set language.



% . ‘Coordinate plane diagrams’.
We may visualize a function, displaying its graph, by its ‘coordinate plane diagram’.
We illustrate the idea with the example below:
Let A= {m,n,p,q,r, st ...}, B={cd,eg,h,..}, and [ : A— B be defined by

f(m)=d, f(n) =e, f(p) = ¢, f(q) = h, f(r) =h, f(s) = h, f(t) = D, --- .
By definition, the graph of f is the set |

G = {<Tn>~d)7 (n7 6), (pa 6>> <Q> h)7 (Ta h)a (57 h)> (ta h)v o }

We draw the ‘coordinate plane diagram’ of the function f as:
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9. ‘Blobs-and-arrows diagram’ versus ‘coordinate plane diagram’.

Depending on how we like the ‘information” concerned with a given function f: A — B
is presented, we may draw its ‘coordinate plane diagram’ or its ‘blobs-and-arrows
diagram’.

Each has its own advantage.

The two diagrams may be converted from one to the other in a systematic way.

[Hustration:
Let A={m,n,p,q,r,5,t,..}, B={c,d,e,g,h,...}, and f : A — B be defined by

f(m):d,f(n):e,f(p):e,f(q):h,f(’r):h,f(s):h,f(t):h, .

(a) ‘Coordinate plane (b) In-between the (c) ‘Blobs-and-arrows
diagram’ of f: two kinds of diagrams: diagram’ of f:
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10. Basic examples of functions in school maths and beyond.
We have encountered various examples of functions in school mathematics and in basic
MATH courses.
(a) Polynomial functions with real coefficients.
(b) Rational functions with real coefficients.
(c) ‘Algebraic functions’ in school maths.

(d) Elementary transcendental functions.

)
)
)
)
(e) ‘Multivariable functions’ in multivariable calculus.
(f) Functions of one complex variable.
(g) Infinite sequences and families.
(h) ‘Algebraic operations’ for algebraic structures.

)

(i) Linear transformations and ‘transformation for various algebraic struc-

tures’.

(j) Various ‘operations’ in calculus and beyond.



11. Families.

The notion of infinite sequences of real numbers can be generalized to the notion of families
for collections of objects.

Definition.
Suppose I, B are sets, and ¢ : [ — B is a function.
Then we say ¢ is a family in B, indexed by I.

The set [ is referred to as the index set for this family, and the set
{x € B:x=p(t) forsome t € I} is called the set of all terms for this family.

Remarks.

(a) This definition generalizes the notion of infinite sequences of real numbers. When I = N,
a family in B is just an infinite sequence in B; when furthermore B = R, it is just an
infinite sequence of real numbers.

(b) We imitate the notations for infinite sequences when we regard the function ¢ from I to
B as a family in B with index set . We suppress the symbols ¢, B, and present this
family as, say, {4 }aer, in which the symbol z,, stands for ¢(«) for each o € 1.

(¢) What is the point of this definition?

[t gives us the flexibility to regard the same family in B, say, {4 }aer, as a family in C
which contains B as a subset, whenever it is convenient for us to do so.



Examples.

(a) {(—00,u)}uer stands for the function with domain IR and range, say, the set of all

intervals, assigning each real number u to the open interval (—oo,u).
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(b) {(—|al|, |a] +1)}seq stands for the function with domain @ and range, say, the set of all
intervals, assigning each rational number a to the open interval (—|a|, |a| + 1).
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(¢c) Let p, q be real numbers.

For any real numbers a,b, not both zero, define £, by L = {(z,y) | v,y €
R and a(z — p) + by — q) = 0}.

C(4,p) 1s the line in the infinite plane whose equation is given by ax + by = ap + bq.
{L(a0) }(ap)er? (0,0)) Stands for the function with domain IR*\{(0, 0)} and range, say, the
set of all lines in the infinite plane, assigning each (a,b) € R*\{(0,0)} to the line £, ).
{L(a0)} (a.5)eR2\((0.07y stands for the function with domain IR*\{(0,0)} and range, say, the
set of all lines in the infinite plane, assigning each (a,b) € R*\{(0,0)} to the line £, ).
(The set of all terms of this family is the pencil of all lines passing through (p, q).)
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(d) Let a, b, ¢ be real numbers, not all zero.
For any real number d, define m; by 7q = {(x,y, 2) | x,y, 2 € R and ax + by + cz = d}.
7, is the plane in the infinite space whose equation is given by ax + by + cz = d.
{7a}aer stands for the function with domain IR and range, say, the set of all planes in
the infinite space, assigning each d € R to the plane m,.
(The set of all terms of this family is the pencil of planes all parallel to the plane ax +
by +cz =0.)




(e) For each complex number p, for each positive real number r, define
C(¢,r)={2€C:|z—p| =1}

(C(¢,r) is the circle in the Argand plane with centre p and radius r.)

Let p € C.
{C(p,7) }re(0,+00) stands for the function with domain (0, +00) and range, say, the set of
all circles in the Argand plane, assigning each positive real number to the circle C(p, ).

(The set of all terms of this family is the pencil of circles concentric at p.)

(f) For each complex number p, for each positive real number r, define
D((,r)={z€C:|z—p| <1}

(D((,r) is the ‘open disc’ in the Argand plane with centre p and radius r.)

{D(r,7) }re(0,+00) stands for the function with domain (0, +00) and range, say, the set
of all open discs in the Argand plane, assigning each positive real number to the open
disc D(r, ).

(g) For each real number «, define the polynomial function f, : R — IR by f.(z) =
z? + ax + 1 for any x € R.
{fa}aer stands for the function with domain IR and range, say, the set of all polynomial

functions, assigning each real number « to f,,.



12. Set operations for families of sets.

The notion of intersection and union for infinite sequences of sets, introduced in the Handout
Universal quantifier and existential quantifier, can be immediately generalized to families
of sets.

Definition.

Let M, I be sets, and {S, }aer be a family of subsets of the set M, indexed by I. (For any
a€l, S, isasubset of M.)

(1) The intersection of the family of subsets {S,}.c; of the set M is defined to
be the set {x € M : x € S, for any o € 1}. It is denoted by ﬂ S

acl

(2) The union of the family of subsets {5, }.c; of the set M is defined to be the
set {x € M : x € S, for some o € I}. It is denoted by U S,

acl

Remark. Suppose C is a subset of P(M), and we ‘index’ C' by its elements to obtain
the family {S}sec. Then the intersection of the set C' of subsets of the set M is the
intersection of the family {S}gsec, and the union of the set C' of subsets of the set M is
the union of the family {S}sec.



13. Recall this result in the Handout Universal quantifier and existential quantifier:
Theorem (x).
Let M be a set and { A}, be an infinite sequence of subsets of M .

(1) Let S be a subset of M. Suppose S C A,, for any n € N. Then S C O(_%O A,
(2) Let S be a subset of M. Suppose S C A, for somen € N. Then S C OL_jO A,.
(3) Let T' be a subset of M. Suppose A,, C T for any n € N. Then OLjO A, CT.

(4) Let T be a subset of M. Suppose A,, C T for some n € N. Then Orjo A, CT.

(5) Let C' be a subset of M. ({A, U C}>q, {A, N Cy, {ANCT,,{C\A,}2, are
infinite sequences of subsets of M.) The equalities below hold:
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Theorem (x) can be generalized immediately to Theorem (x'). The proofs of the respective
statements are similar.

Theorem (¥).
Let M, I be sets and { A, }aer be a family of subsets of M, indexed by I.
(0) Suppose I = (). Then ﬂ A, =M and U A, =10.

acl acl

(1) Let S be a subset of M. Suppose S C A, for any aw € I. Then S C m A,

acl

(2) Let S be a subset of M. Suppose S C A, for some a € I. Then S C U Aa.

acl

(3) Let T' be a subset of M. Suppose A, C T for any o € I. Then U A, CT.

acl

(4) Let T' be a subset of M. Suppose A, C T for some o € I. Then m A, CT.

acl

(5) ..



Theorem (x) can be generalized immediately to Theorem (x'). The proofs of the respective

statements are similar.
Theorem (¥).
Let M, I be sets and { A, }aer be a family of subsets of M, indexed by I.

(5) Let C' be a subset of M. ({Aq U Clacr, {Aa N Clacr, {ANC }aer, {C\An }aer are
families of subsets of M.) The equalities below hold:

(5a) (ﬂ Aa> NC=()(4.NCO). (5¢) (ﬂ AQ> \C = [)(4.\0).

acl acl

(5b) [ A JuC = ]JA.u0) (5f) (U Aa> \C = J(4.\0).

acl acl

(U
(5¢) (ﬂ Aa> UC =((4.U0). (58) O\ (ﬂ Aa> = [ J(@\Aa).
(U]

acl acl

(5d) [ | JAs | nC = ]JAanC). (5h) C'\ (U Aa> = [(C\A.).

acl acl





