1. Well-ordering Principle for the integers and Least-upper-bound Axiom

for the reals.

Here we take for granted the validity of these two statements:

(a) Well-ordering Principle for the integers (WOPI).
Let S be a non-empty subset of N. S has a least element.

(b) Least-upper-bound Axiom for the reals (LUBA).

Let A be a non-empty subset of R. Suppose A is bounded above in IR.
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With the help of the Least-upper-bound Axiom for the reals, we are going to establish

the validity of two heuristically obvious statements:

(a) Unboundedness of the natural number system in the reals (UNR).

N is not bounded above in IR.

(b) Archimedean Principle for the reals (AP).
For any € > 0, there exists some N € N\{0} such that Ne > 1.

The Well-ordering Principle for integers will be used later on.



2. Unboundedness of the natural number system in the reals (UNR).

N is not bounded above in IR.

Proof. [Proof-by-contradiction argument. |

Suppose it were true that N was bounded above in R.

Note that 0 € N. Then N = 0.

Then, by the Least-upper-bound Axiom, N would have a supremum in R. We denote this

number by o.
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3. Archimedean Principle for the reals (AP).
For any € > 0, there exists some N € N\{0} such that Ne > 1.
Proof. Pick any € > 0.

[What do we want? Name an appropriate positive integer N which satisfies Ne > 1.

1 1 1
So ask: 1-& > 1?7 26 > 17 3¢ > 1?7 ... Or how about — < 17 — <27 — <37 ... |
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Corollary to (AP). (Re-formulations of the Archimedean Principle.)

Each of the statements below is logically equivalent to each other

(1) For any € > 0, there exists some N € N\{0} such that Ne > 1.

1
(2) For any € > 0, there exists some N € N\{0} such that ~ <€

(3) For any K > 0, there exists some N € N\{0} such that N > K.
Remark. In fact (UNR) is logically equivalent to (AP). (Proof?)
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4. Dense-ness of the rationals and irrationals in the reals.
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With the help of all the above statements, we establish the validity of some heuristically
obvious statements about the rational numbers and irrational numbers.

Theorem (D1). (‘Dense-ness’ of posﬂ;we rational numbers amongst pos-

itive real numbers.)

Let a, B € R. Suppose B > a > 0. Then there exists some r € Q such that

a<r<p. Ire@?

0- s > nN~—~—> O . % .

0 =€ R Be R 0 € IR peR
Remark.  Strictly between any two distinct positive real numbers, there is at least

one positive rational number.

Corollary (D2). (‘Dense-ness’ of the rationals amongst the reals.)

Let o, B € R. Suppose oo < 3. Then there exists some r € Q such that o <1 < f.

Corollary (D3). (‘Dense-ness’ of the irrationals 'amongst the reals.)

Let a, 5 € R. Suppose v < B. Then there exists some v € IR\Q such that o < u < ﬁ
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The phenomena described in Corollary (D2) and Corollary (D3) are known as dense-ness
in the reals.

Definition. (Dense-ness in the reals.)
Let D be a subset of R.

D is said to be dense in R if every open interval in R contains some element of D.

Corollary (D4).
Q is dense in R.
IR\Q is dense in R.

Remark. Not every ‘important’ subset of R has such a property: for instance, neither
N nor Z is dense in IR.
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5. Proof of Theorem (D1).
Let a, 8 € R. Suppose 8 > a > 0.

[What do we want? Name an appropriate rational number which lies strictly between

and .

Imagine you may choose some

| [dea.
positive integer and then will mark
on the positive half-line all the points 1n
{k/N | k €N}
Which N will you choose so as to definitely
guarantee that at least one such point, say,
M /N, satisfies o) < <67
This N needs be large, but how large?
What if we want (o) < (M + 1)/N <[Bas
well?]
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6. Appendix 1: The motivation in Cantor’s construction of the real number
system.

Theorem (IR1).

Let « be an irrational number.

Let {r, }o be a strictly decreasing infinite sequence of rational numbers which converges
to 0. The statements below hold:

(a) For any n € N, there exists some ¢, € Q such that o — r, < ¢, < @+ 1y,
(b) {cn}oo, is an infinite sequence of rational numbers which converges to .

(¢c) For any positive rational number q, there exist some N € N such that for anym,n € N,
ifm > N andn > N then |c,, — ¢,| < q.

Statement (a) is an immediate consequence of Corollary (D2).

Statements (b), (¢) are consequences of Statement (a) together with the definition for the
notion of limit of sequence.

Remark. What the above says, in plain words, is that it is possible to approximate the
irrational number « as accurately as we like with infinite sequences of rational numbers
which converges to «, such as {¢,}>2,.



Vi aekio oy Theovew (TR1)

Aol ) .

A S O~ &:Vo . . . o

yeshonal. | .. :

\/\,WVN‘OW‘/ . ° o A :

o0 A=\, : o,
' in‘gh:o ‘S -9 j
3 o — .

O w'\ﬁi{y = f; ok+ﬁ

A t S o o: SS —

" \\\—\fb 0&-(; °L+T3

s | . .-

‘:le(‘“‘“& : &:Y,f, ‘ M-(*‘ﬂ,,

W~ :

o‘l ] i 06"‘64"0 cs S Q3‘ o 'y &0 Py
ot s °.""3 ANy e e o,y ol KA o
1 B |
{MAA‘@\ Thy W a
Q/GKC/ . ' - é}f—" w\%:\exw
C-hewy
Q&.) T\S\( O KQN} *L\‘@l{/ M&S Jomeu O/hé Q Sw(j,\ ‘d\a o=\ - & Cn < 0<+‘(h ' J&é\l\e\;
j Mﬁteok [’-] E%E‘:’o [1%] oyccwajiev o W (‘L€,> LDX b .

.

B {632, cowwge to o (oo " Poks ot
@) tov o~ ?w\ﬁvﬂ ANl humber e tt\&b ix"d(s . I\ICQN S\V(LtLJ o fedno b cdled
{YV oy wm, nE H\&) IIS >N ok ‘f\>]\\ Riing \Q’”\— ‘\l <&L - m-fm&%ﬁaft

o | S




The idea that irrational numbers can be approximated as accurately as possible by infinite
sequences of rational numbers was exploited by Cantor in his approach in constructing
the real number system out of the rational number system.

Definition.

Let {¢, }5°, be an infinite sequence of rational numbers. The sequence {cy, }o2 is said to
be a fundamental sequence if the statement (F'S) holds:

(FS) For any positive rational number q, there exist some N € N such that for anym,n € N,
if m > N andn > N then |c,, — ¢,| < q.
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7. Appendix 2: The motivation in Dedekind’s construction of the real num-
ber system.

Theorem (IR2).

Let « be an irrational number. Let A, = (—o0,a) N, B, = (a, +00) N Q.
The statements below hold:

(a|*) For any s € A, foranyt € B,, s < a < t.
(1) Aa N B, = 0.
() Aa U B, = Q.

(b) i. A, is bounded above in R by every element of B,,.
ii. A, has no greatest element.

(¢) 1. B, is bounded below in R by every element of A,.
ii. B, has no least element.

(d) i. The supremum of A, in R is .

ii. The infimum of B, in R is .

The proofs for Statements (x), (1), (1) are straightforward exercises in set language and
inequalities. Statements (b.i), (c.i) are immediate consequences of Statement (x).
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Remark. What the above says, in plain words, is that the irrational number « ‘splits’
@ into two ‘disjoint’ sets of rationals, namely A,, B,, every rational in A, being strictly
less than every rational in B,

The pair of sets A,, B, is called the Dedekind cut induced by the irrational
number « |

The idea that an arbitrary irrational number corresponds to a Dedekind cut induced by
that irrational number was exploited by Dedekind in his approach in constructing the
real number system out of the rational number system.

Definition.

Let S, T be non-empty subsets of Q. The pair of sets S,T" is called a Dedekind cut if
SNT =0and SUT = Q and for any x € S, foranyy € T, z < y. |
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8. Appendix 3: Decimal representation of real numbers.

How do we represent real numbers with the help of natural numbers?

One method of representation is decimal representation. We have been using it since childhood.

We start with a result which is analogous of Division Algorithm for Natural Numbers (Theorem (DAN) in

the Handout Division Algorithm):
Theorem (DAR).
Let z,u € R. Suppose x > 0 and u > 0.

Then there exist some unique ¢ € N, 7 € R such that t =g x u+7rand 0 <7 < u.
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The existence part of Theorem (DAR) relies on the Archimedean Principle and the Well-ordering Principle

for Integers. For its proof, imitate how we start the argument for Theorem (1).

The argument for the uniqueness part of Theorem (DAR) is almost the same as that for Theorem (DAN).

Corollary (DAR1).

Let z € IR. Suppose x > 0.

Then there exist some unique ¢ € N, 7 € R such that x = q¢+17 and 0 < r < 1.

Remark on terminology. In the context of Corollary (DAR1), We denote the natural number g by

||, and call it is called the integral part of the non-negative real number x. The number r is

referred to as the non-integral part of the non-negative real number z.



Definition. (Decimal representation of real numbers between 0 and 1.)
Let d € IR. Suppose 0 < d < 1.
Let {d,}>°, be an infinite sequence in [0, 9].

P (0. ¢]
d
Suppose the infinite sequence { g 1Ok:k+1 } converges to d.

P (0. 9]
d
Then we say { g 10];11} is a decimal representation of d.

As a convention, we write d = 0.dyddodsdy - - -
Remarks.

" So, for instance, when we

(I) What we actually mean by ‘d = 0.dod dadsdy - -7 is ‘d = pliglo Z 10k:+1

1
write ‘g = 0.333333-- ., what we are actually saying is that 3 is the limit of the infinite sequence

Hz—/ ’
p 3 0
Z 10k+1 ’
k=0 p=0

(IT) Some real numbers may admit distinct decimal representations.

1 1 . 1 »
For example, 5= 0.5000000 - - - and 5= 0.4999999 - - .. But this is natural in light of the definition of

all 0’s all 9’s

decimal representation in terms of convergence of infinite sequences.



That every real number between 0 and 1 admits a decimal representation is guaranteed by Theorem (DR).

Theorem (DR).
Let a € R. Suppose 0 < a < 1.
(a) For any n € N, define a,, = [10"a].

—~ m . . . .
{a,}52, is an infinite sequence in N.

~ o
Qnp, ) ) ) . .
Moreover 1S an 1ncreasin mﬁnlte seqguence Of real numbers and converges to a.
’ 10n+1

(b) Further define ay = ay. For any m € N\{0}, further recursively define a,, = 10a,,—1 — Gy,.

n=0

{an}oo_, is an infinite sequence in [0, 9].

10F+1 10n+1 0

p > ~ 00
a a
The infinite sequence { E i } is the same as { - } . It is a decimal representation of a.
k=0

p=0

~ 00

a

The justification for the convergence of {10nn+1} to a relies on the formal definition for the notion of
n=0

limit of sequence. The rest of the argument for Theorem (DR) is straightforward.



INlustrations of the ideas in Theorem (DR).

1
Let a = —.
(a) Let a 5

~ 10 - 100 - 1000
ag = {gJ =3, a; = {?J = 33, ag = {TJ = 333, et cetera.

For each n € N, a,, = 3.

| | ) 3
A decimal representation for a is Z i , as expected.
j=0
n=0
1

(b) Let a = 2

~ 10 - 100 - 1000

ag = {KJ =2,a1 = {?J = 20, as = {TJ = 200, et cetera.

We have ag = 2. For each n € N\{0}, a,, = 0.

(0. 9]

0

. , 2
A decimal representation for a is 0 + ; T . as expected.

n=0



In the light of Theorem (DAR) and Theorem (DR), we may express each non-negative real number x as
x = N.agajasazay - - -,
in which NV is the integral part of z, and
0.apajasaszay - - -

is a decimal representation of the non-integral part of x.

We refer to N.agaiasasay - - - as a decimal representation of the non-negative real number .

When y is a negative real number, —y is a positive real number, and admits a decimal representation
—Y = M.boblbgbglM et

We may express y as

Yy = —M.b0b1b2b3b4 cee

We refer to —M.byb1b2b3by - - - as a decimal representation of the negative real number y.



