






















8. Appendix 1: Beyond the number e and towards the definition of the
exponential function.

You might have been told ‘ lim
n→∞

(
1 +

2

n

)n

= e2’, ‘ lim
n→∞

n∑
k=0

3k

k!
= e3’, et cetera.

What ‘ lim
n→∞

(
1 +

2

n

)n

= e2’ telling you is :

The infinite sequence
{(

1 +
2

n

)n}∞

n=2

converges in R, and its limit is equal to e2

(which is the square of the number e as we have defined).

But something seems to be wrong:

Even though lim
n→∞

(
1 +

2

n

)n

may exist, it is not immediately apparent why the equality

lim
n→∞

(
1 +

2

n

)n

= lim
n→∞

(
1 +

1

n

)2n

should hold.
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You might have been told ‘ lim
n→∞

(
1 +

2

n

)n

= e2’, ‘ lim
n→∞

n∑
k=0

3k

k!
= e3’, et cetera. ...

As for ‘ lim
n→∞

n∑
k=0

3k

k!
= e3’, what it is tell you is:

The infinite sequence
{

n∑
k=0

3k

k!

}∞

n=2

converges in R, and its limit is equal to e3 (which

is the cube of the number e as we have defined).

Again something seems to be wrong:

Even though lim
n→∞

n∑
k=0

3k

k!
may exist, it is not immediately apparent why the equality

lim
n→∞

n∑
k=0

3k

k!
= lim

n→∞

(
n∑

k=0

1

k!

)3

should hold.
So why are these statements true? They are the consequences of Theorem (5), Theorem
(6) and Corollary (7).
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Theorem (5).
Let α be a positive real number. Let {an}∞n=2, {bn}∞n=2, {cn}∞n=2 be infinite sequences in
R defined respectively by

an =
(
1 +

α

n

)n
, bn =

n∑
k=0

αk

k!
, cn =

(
1− α2

2n

) n∑
k=0

αk

k!
for any n ∈ N\{0, 1}.

Then {an}∞n=2, {bn}∞n=2, {cn}∞n=2 converge to the same limit.

Theorem (6).

Let σ, τ be positive real numbers. Define un =

n∑
k=0

σk

k!
, vn =

n∑
k=0

τ k

k!
, wn =

n∑
k=0

(σ + τ )k

k!

for each n ∈ N. The statements below hold:
(a) For any n ∈ N, the inequality wn ≤ unvn ≤ w2n holds.

(b) lim
n→∞

wn =
(
lim
n→∞

un

)(
lim
n→∞

vn

)
.

Corollary (7).

For any positive integer α, the equality lim
n→∞

n∑
k=0

αk

k!
= eα holds.
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9. Appendix 2: From the exponential function to ‘powers’ and ‘index laws’.
Theorem (5) and Theorem (6) are the first steps towards making sense of the exponential
function exp : R −→ R.

After more work, we can prove:
Theorem (8).

(a) For any α ∈ R, the limits lim
n→∞

(
1 +

α

n

)n
, lim
n→∞

n∑
k=0

αk

k!
exist in R and are equal to each

other.

(b) For any α, β ∈ R, the equaltiy lim
n→∞

n∑
k=0

(α + β)k

k!
=

(
lim
n→∞

n∑
k=0

αk

k!

)(
lim
n→∞

n∑
k=0

βk

k!

)
holds.
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Theorem (8) justifies the definition of the exponential function, and yields Theorem (9),
which gives the basic (arithmetic) properties of the exponential function.
Definition. (The exponential function.)

Define the function exp : R −→ R by exp(x) = lim
n→∞

n∑
k=0

xk

k!
for any x ∈ R.

exp is called the exponential function (on the reals).

Theorem (9).
The statements below hold:

(a) exp(0) = 1, and exp(1) = e.
(b) For any s, t ∈ R, exp(s + t) = exp(s) exp(t).

(c) For any s ∈ R, exp(s) > 0 and exp(−s) =
1

exp(s)
.

15



Arbitrary real powers of e is in fact defined through the use of the exponential function.
Definition.
For any σ ∈ R, we define the number eσ by eσ = exp(σ).
Remark. Theorem (9) immediately translates as:

(a) e0 = 1, and e1 = e.
(b) For any s, t ∈ R, es+t = eset.

(c) For any s ∈ R, es > 0 and e−s =
1

es
.

You may wonder what the point of this is.
You may want to ask:

‘Didn’t we know that es+t = eset for any real numbers s, t from school maths?’
The answer to this question is:

‘In fact, in school maths we were told es+t = e2et for any real numbers s, t, but it was
not explained why it would be so.
Actually it was not explained why, for instance, 2

√
2+

√
3 = 2

√
2 · 2

√
3 holds. We were not

given the explanation because, in the first place, we did not know what 2
√
2 was.’
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With the help of the exponential function exp : R −→ R and the notion of inverse
function, we may make sense of the (natural) logarithmic function ln : (0,+∞) −→ R that
we encountered in school maths. Through the exponential function and the logarithmic
function we may make sense of the notion of arbitrary real powers of arbitrary positive
real numbers, by giving an appropriate definition for them, and justify the ‘index laws’
for them with reference to the definition.

Definition.
Let a be a positive real number, and σ be a real number. We define the number aσ by
aσ = exp(σ ln(a)).
Index Laws.
The statements below hold:

(a) For any a > 0, a0 = 1 and a1 = a.
(b) For any a > 0, for any σ, τ ∈ R, aσ+τ = aσaτ .

(c) For any a > 0, for any σ ∈ R, aσ > 0 and a−σ =
1

aσ
.

A full treatment of the above will be given in your analysis course.
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