1. What is the number e?

You might have been told:
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But there are two questions:

(A) We are aware that some infinite sequences converge to limits and some do not.

Does { <1 + —> } converge to any limit at all?
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Does — converge to any limit at all?
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(B) Even if both of these infinite sequence converge, do they have the same limit (which, as
we have been told, is the number e)?



This is the answer to both Question (A) and Question (B):

Theorem (1).
Let {an}o2s, {bn}os, {cntrey be infinite sequences in R defined respectively by
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Then {a,}%,, {b,}52,, {cn}oo, converge to the same limit.

Proof of Theorem (1). Postponed; we will Lemma (2), Lemma (3) and Lemma (4)
as ‘stepping stones’.

Remark on notations.  From now on, {a,}n=2, {0n}>2,, {cn}22, will refer to the
same infinite sequences defined in the statement of Theorem (1).



2. Bounded-Monotone Theorem and Sandwich Rule.

The crucial tools used in the proof of Theorem (1) are two results that you have learnt in
your calculus course.

Bounded-Monotone Theorem (BMT).

Let {x,}°°, be an infinite sequence in IR.

Suppose {x,}>2, is increasing.

Further suppose {x, }%°, is bounded above in R, (say, by j).

Then {z,}%, is convergent in R. (Moreover, lim z, < f3.)
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Sandwich Rule (SR).

Let {un, 1520, {vn}o20, {wn}oy be infinite sequences in R.

Suppose that for any n € N, u, < v, < wy,.

Further suppose that {u,}°2,, {w,}>>, converge to the same limit, say, £ in IR.

Then {v,}>, also converges to £.

Remark. You will learn the proofs of these ‘two results in MATH2050.



3. Lemma (2). (Properties of {b,}5%5.)

(a) {b,}22, is strictly increasing.
(b) {b,}5°, is bounded above by 3.
(c) lim b, exists in IR, and lim b, < 3.
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Remark on notation. For the moment, we write e, = lim b,,.
n—o0

Proof of Lemma (2).
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(c) {bn}22, is strictly increasing. {by}o 4 is also bounded above by 3.
Then by (BMT), {bn}n_2 converges in R, and lim b, < 3.
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4. Lemma (3). (Properties of {a,}>2,.)

1 1 2 k—1
(a) For any n € N\{0, 1}, a, = 2+Z_k_' -1 (1_ﬁ> (1—5> (1—7) < by,

k=2
(b) {a,}5°, is bounded above by 3.
(¢) {an}S2, is strictly increasing.

(d) lim a, exists in R, and lim a, < 3.
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Remark on notation. For the moment, we write e, = lim a,,.
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Proof of Statement (d) in Lemma (3).

(d) (Suppose we have already proved (a), (b), (c).)
{a,}5°, is strictly increasing.
{a,}52, is also bounded above by 3.
Then by (BMT), {a,}>2, converges in R, and lim a, < 3.
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Lemma (3). (Properties of {a,}22.)
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(a) For any n € N\{0,1}, ap, =2+ ZE -1 <1—5> <1_ﬁ> S (1_T> < by,
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(b) {an}2, is bounded above by 3.

Proof of Statement (a), Statement (b) in Lemma (3).
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(b) Let n > 9. a, < b, < 3. Therefore {a,}°°, is bounded above by 3.



Lemma (3). (Properties of {a,}°,.)
(¢) {an 52, is strictly increasing.

Proof of Statement (c) in Lemma (3).
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5. Lemma (4). (Properties of {c,};2,.)
(a) For any n € N\{0,1,2,3}, ¢, < an < bp.
Proof of Statement (a) in Lemma (4).

(a) Let n > 4. We have already proved a,, < b,.
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Lemma (4). (Properties of {c,}°,.)
(a) For any n. € N\{0,1,2,3}, ¢, < a, < by,

(b) lim ¢, exists, and lim ¢, = e.
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Proof of Statement (b) in Lemma (4).
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(b) lim (1 — —) exists and is 1.
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Also, lim b,, exists and is ep.
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Then lim ¢, exists and is 1 - e, = ey,
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6. Proof of Theorem (1).
By Lemma, (4), for any n € N\{0, 1,2,3}, ¢, < a, < by,

By Lemma (2), Lemma (3) and Lemma (4), the limits lim a,, lim b,, lim ¢, ex1st
n—oo n—od n—oo

Their respective values are e, €p, €p.

Then by (SR), we have e, < e, < e,. Hence e, = e



7. Definition. (The number e.)

We define the real number e to be the common value of the limits
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and

Remark. The value of e 1s 2.718281828459 - - - .






8. Appendix 1: Beyond the number ¢ and towards the definition of the
exponential function.

2\" 3
You might have been told ‘ lim (1 + —) = e? ‘lim g — =¢¥, et cetera.
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What * lim (1 + —) = ¢% telling you is
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The infinite sequence {(1 + —) } converges in R, and its limit is equal to e’
n n==2

(which is the square of the number e as we have defined).

But something seems to be wrong:
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Even though lim (1 + —> may exist, it is not immediately apparent why the equality

should hold.



n—oo
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You might have been told * lim (1 -+ —) = ¢?, “lim Z — = ¢ et cetera.
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As for nlgl(;lo Z x e”’, what it is tell you is:
The infinite sequence { k'} converges in R, and its limit is equal to e® (which
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is the cube of the number e as we have defined).

Again something seems to be wrong:
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Even though lim Z — may exist, it is not immediately apparent why the equality
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should hold.

So why are these statements true? They are the consequences of Theorem (5), Theorem

(6) and Corollary (7).



Theorem (5).

Let a be a positive real number. Let {a,} 2o, {b,}>2 o, {cn}ry be infinite sequences in
IR defined respectively by
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Then {a,}>%,, {b,}°°,, {c,}5%, converge to the same limit.
Theorem (6).
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Let o, T be positive real numbers. Define u,, = kz: o Uy = kz: 7T w, = kz: T
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for each n € N. The statements below hold:
(a) For any n € N, the inequality w, < u,v, < ws, holds.

(b) lim w, = (lim un) ( lim vn).
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Corollary (7).
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For any positive integer «, the equality lim g i e holds.
k=0
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9. Appendix 2: From the exponential function to ‘powers’ and ‘index laws’.

Theorem (5) and Theorem (6) are the first steps towards making sense of the exponential
function exp : R — IR.

After more work, we can prove:

Theorem (8).
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(a) For any o € R, the limits lim (1 + —) , lim exist in IR and are equal to each
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Theorem (8) justifies the definition of the exponential function, and yields Theorem (9),
which gives the basic (arithmetic) properties of the exponential function.

Definition. (The exponential function.)

n__k
Define the function exp : IR — IR by exp(z) = lim Z “ for any r € IR.
ns00 4— k!

exp Is called the exponential function (on the reals).

Theorem (9).
The statements below hold:

(a) exp(0) = 1, and exp(1) = e.
(b) For any s,t € R, exp(s + t) = exp(s) exp(t).

(c) For any s € R, exp(s) > 0 and exp(—s) = E—r



Arbitrary real powers of e is in fact defined through the use of the exponential function.
Definition.

For any o € R, we define the number e’ by e = exp(o).
Remark. Theorem (9) immediately translates as:

(a) e’ =1, and e! = e.
(b) For any s,t € R, e = e’¢e'.

1
(c) Forany s € R, ¢* > 0 and e™* = —.

68
You may wonder what the point of this is.

You may want to ask:

‘Didn’t we know that e*™ = ee’ for any real numbers s, ¢t from school maths?’

The answer to this question is:
‘In fact, in school maths we were told e**! = e?e! for any real numbers s, t, but it was
not explained why it would be so.

Actually it was not explained why, for instance, OVZHV3 — 9V2.9V3 [olds. We were not

given the explanation because, in the first place, we did not know what 2V2 was!



With the help of the exponential function exp : IR — IR and the notion of inverse
function, we may make sense of the (natural) logarithmic function In : (0, +00) — R that
we encountered in school maths. Through the exponential function and the logarithmic
function we may make sense of the notion of arbitrary real powers of arbitrary positive
real numbers, by giving an appropriate definition for them, and justify the ‘index laws’
for them with reference to the definition.

Definition.

Let a be a positive real number, and o be a real number. We define the number a’ by
a’ = exp(oln(a)).

Index Laws.

The statements below hold:

(a) For any a > 0, a" = 1 and a' = a.

o ,T

(b) For any a > 0, for any o, 7 € IR, a7 = a%a’.

1
(c) For any a > 0, for any 0 € R, a” > 0 and a™ = —.
a/o-

A full treatment of the above will be given in your analysis course.





