
MATH1050 Arithmetico-geometric Inequality

1. Definitions. (Arithmetic mean, geometric mean and harmonic mean.)

Let n ∈ N\{0}. Let a1, a2, · · · , an be n positive real numbers.

(a) The number
a1 + a2 + · · ·+ an

n
is called the arithmetic mean of a1, a2, · · · , an.

(b) The number n
√
a1a2 · ... · an is called the geometric mean of a1, a2, · · · , an.

(c) The number

[

1

n

(

1

a1
+

1

a2
+ · · ·+ 1

an

)]

−1

is called the harmonic mean of a1, a2, · · · , an.

Remark. By definition, the harmonic mean of a1, a2, · · · , an is the reciprocal of the arithmetic mean of the reciprocals
of a1, a2, · · · , an.

2. Theorem (1). (Arithmetico-geometrical Inequality.)

Let m ∈ N\{0}. Let a1, a2, · · · , am be m posiitve real numbers.

The inequality
a1 + a2 + · · ·+ am

m
≥ m

√
a1a2 · ... · am holds. Equality holds iff a1 = a2 = · · · = am.

Remark. So the result says: the arithmetic mean of an arbitrary collection of ‘finitely many’ positive real numbers
is no less than the geometric mean of the same collection. There are many proofs for this result: one of them is given
below, as a consequence of Lemma(3), Lemma (4), Lemma (5) and Lemma (6) together.

3. Corollary (2).

Let m ∈ N\{0}. Let a1, a2, · · · , am be m positive real numbers.

The inequality
[

1

m

(

1

a1
+

1

a2
+ · · ·+ 1

am

)]

−1

≤ m
√
a1a2 · ... · am ≤ a1 + a2 + · · ·+ am

m

holds. Each equality holds iff a1 = a2 = · · · = am.

Remark. The proof is left as an exercise: it is a simple extension of the arithmetico-geometrical inequality.

4. Lemma (3). (‘Special case’ of Theorem (1): ‘for two positive numbers’.)

Let u, v be positive real numbers. The inequality
u+ v

2
≥

√
uv holds. Equality holds iff u = v.

Proof. Exercise.

5. Illustration of the key idea in the proof of Theorem (1).

(a) We prove the statement (♯) below, which is the ‘inequality part’ of the ‘special case’ of Theorem (1) ‘for four
positive numbers’:

(♯) Let a, b, c, d be positive real numbers.
a+ b+ c+ d

4
≥ 4

√
abcd.

Proof of the statement (♯). Let a, b, c, d be positive real numbers.
√
a,
√
b,
√
ab are well-defined, and a = (

√
a)2, b = (

√
b)2,

√
ab =

√
a
√
b.

Then a+ b = (
√
a)2 + (

√
b)2 ≥ 2

√
a
√
b = 2

√
ab. Similarly, c+ d ≥ 2

√
cd.

Therefore, (once again applying the same argument,) we have

a+ b+ c+ d

4
=

1

2

(

a+ b

2
+

c+ d

2

)

≥
√
ab+

√
cd

2
≥ 4

√
ab

4
√
cd =

4
√
abcd.

(b) With the help of the statement (♯), we deduce the statement (♭) below, which is the ‘inequality part’ of the ‘special
case’ of Theorem (1) ‘for three positive numbers’:

(♭) Let r, s, t be positive real numbers.
r + s+ t

3
≥ 3

√
rst.

Proof of the statement (♭). Let r, s, t be positive real numbers.

Define u =
r + s+ t

3
. u is also a positive real number. By (♯), we have

r + s+ t+ u

4
≥ 4

√
rstu.

Note that
r + s+ t+ u

4
=

r + s+ t+ (r + s+ t)/3

4
=

r + s+ t

3
= u.

Then u =
r + s+ t+ u

4
≥ 4

√
rstu =

4
√
rst · 4

√
u.

Note that u > 0, and 4
√
u > 0. Then

(

4
√
u
)3 ≥ 4

√
rst.

Therefore
r + s+ t

3
= u =

[

3

√

(

4
√
u
)3

]4

≥
(

3

√

4
√
rst

)4

=
(

12
√
rst

)4

=
3
√
rst.
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6. Lemma (4). (Many ‘special cases’ of Theorem (1): ‘for 2n positive numbers’.)

Let n ∈ N. Let a1, a2, · · · , a2n be 2n positive real numbers.

The inequality
a1 + a2 + · · ·+ a2n

2n
≥ 2n

√
a1a2 · ... · a2n holds.

Equality holds iff a1 = a2 = · · · = a2n .

Proof of Lemma (4). Denote by P (n) the proposition below:

‘Suppose a1, a2, · · · , a2n are positive real numbers. Then

(a1a2 · ... · a2n)
1

2
n

≤ a1 + a2 + · · ·+ a2n

2n
.

Equality holds iff a1 = a2 = · · · = a2n .’

• P (0) is a trivially true statement. (Why?)

• Let k ∈ N. Suppose P (k) is true. Then the statement below is true:

‘Suppose c1, c2, · · · , c2k are positive real numbers. Then

(c1c2 · ... · c2k)
1

2
k

≤ c1 + c2 + · · ·+ c2k

2k
.

Equality holds iff c1 = c2 = · · · = c2k .’

We are going to verify that P (k + 1) is true:

Suppose b1, b2, · · · , b2k , · · · , b2k+1 are positive real numbers.

Write d1 = (b1b2 · ... · b2k)
1

2
k

and d2 = (b2k+1b2k+2 · ... · b2k+1)

1

2
k

. Then

(b1b2 · ... · b2k+1)

1

2
k+1

=

[

(b1b2 · ... · b2k)
1

2
k

(b2k+1b2k+2 · ... · b2k+1)

1

2
k

]
1
2

=
√

d1d2

≤ d1 + d2
2

(by Lemma (2))

=
1

2

[

(b1b2 · ... · b2k)
1

2
k

+ (b2k+1b2k+2 · ... · b2k+1)

1

2
k

]

≤ 1

2

(

b1 + b2 + · · ·+ b2k

2k
+

b2k+1 + b2k+2 + · · ·+ b2k+1

2k

)

=
b1 + b2 + · · ·+ b2k+1

2k+1

∗ Suppose b1 = b2 = · · · = b2k+1 . Then

(b1b2 · ... · b2k+1)

1

2
k+1

= b1 =
b1 + b2 + · · ·+ b2k+1

2k+1
.

∗ Suppose

(b1b2 · ... · b2k+1)

1

2
k+1

=
b1 + b2 + · · ·+ b2k+1

2k+1
.

Then


































d1 + d2
2

=
√
d1d2

b1 + b2 + · · ·+ b2k

2k
= (b1b2 · ... · b2k)

1

2
k

b2k+1 + b2k+2 + · · ·+ b2k+1

2k
= (b2k+1b2k+2 · ... · b2k+1)

1

2
k

By the second and third equalities, we have b1 = b2 = · · · = b2k and b2k+1 = b2k+2 = · · · = b2k+1

respectively. Then d1 = b1 and d2 = b2k+1.

Since
d1 + d2

2
=

√

d1d2, we have b1 = d1 = d2 = b2k+1. Therefore b1 = b2 = · · · = b2k+1 .

Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.
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7. Lemma (5). (‘Backward Induction’ Lemma.)

Denote by Q(m) the proposition below:

• Suppose a1, a2, · · · , am are positive real numbers.

Then (a1a2 · ... · am)
1
m ≤ a1 + a2 + · · ·+ am

m
.

Equality holds iff a1 = a2 = · · · = am.

Let p ∈ N\{0}. Suppose Q(p+ 1) is true. Then Q(p) is true.

Proof of Lemma (5). Denote by Q(m) the proposition below:

• Suppose a1, a2, · · · , am are positive real numbers.

Then (a1a2 · ... · am)
1
m ≤ a1 + a2 + · · ·+ am

m
.

Equality holds iff a1 = a2 = · · · = am.

Let p ∈ N\{0}. The statements Q(p+ 1), Q(p) respectively read:

Q(p + 1): Suppose c1, c2, · · · , cp+1 are positive real numbers. Then (c1c2 · ... · cp+1)
1

p+1 ≤ c1 + c2 + · · ·+ cp+1

p+ 1
.

Equality holds iff c1 = c2 = · · · = cp+1.

Q(p): Suppose b1, b2, · · · , bp are positive real numbers. Then (b1b2 · ... · bp)
1
p ≤ b1 + b2 + · · ·+ bp

p
. Equality holds

iff b1 = b2 = · · · = bp.

Suppose the statement Q(p+ 1) holds. We proceed to deduce that the statement Q(p) holds:

∗ Suppose b1, b2, · · · , bp be positive real numbers.

Define bp+1 =
b1 + b2 + · · ·+ bp

p
. By definition, bp+1 is a positive real number. Then by Q(p+ 1), we have

b1 + b2 + · · ·+ bp + bp+1

p+ 1
≥ (b1b2 · ... · bp · bp+1)

1
p+1

.

Note that

b1 + b2 + · · ·+ bp + bp+1

p+ 1
=

b1 + b2 + · · ·+ bp + (b1 + b2 + · · ·+ bp)/p

p+ 1
=

b1 + b2 + · · ·+ bp
p

= bp+1.

Then

bp+1 =
b1 + b2 + · · ·+ bp + bp+1

p+ 1
≥ (b1b2 · ... · bp · bp+1)

1
p+1

= (b1b2 · ... · bp)
1

p+1 · bp+1

1
p+1

Note that bp+1

1
p+1

> 0. Then

bp+1

p
p+1

= bp+1

1− 1
p+1 ≥ (b1b2 · ... · bp)

1
p+1

.

Therefore
b1 + b2 + · · ·+ bp

p
= bp+1 = bp+1

p
p+1

·

p+1
p ≥ (b1b2 · ... · bp)

1
p+1

·

p+1
p

= (b1b2 · ... · bp)
1
p

∗ Suppose b1 = b2 = · · · = bp.

Then

(b1b2 · ... · bp)
1
p

= b1 =
b1 + b2 + · · ·+ bp

p
.

∗ Suppose

(b1b2 · ... · bp)
1
p

=
b1 + b2 + · · ·+ bp

p
.

Then (b1b2 · ... · bp)
1
p

= bp+1 by the definition of bp+1.

Therefore

(b1b2 · ... · bp · bp+1)
1

p+1

=
(

bp+1
p+1

)

1
p+1

= bp+1 =
pbp+1 + bp+1

p+ 1
=

b1 + b2 + · · ·+ bp + bp+1

p+ 1

Therefore b1 = b2 = · · · = bp = bp+1. In particular, b1 = b2 = · · · = bp.

Hence the statement Q(p) holds.
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8. Lemma (6).

Let k ∈ N\{0, 1}. There exists some h ∈ N so that 2h < k ≤ 2h+1.

Proof of Lemma (6).

Let k ∈ N\{0, 1}. Note that 2k ≥ k. (Why?)

Define the set S = {x ∈ N : 2x ≥ k}. [Apply the Well-ordering Principle for integers on the set S.]

We have k ∈ S. Then S is a non-empty subset of N. By the Well-ordering Principle for integers, S has a least element,
which we denote by λ.

Since k ≥ 2, we have λ ≥ 1.

Define h = λ− 1. By definition, h ∈ N and k ≤ 2h+1.

We verify that 2h < k:

• Suppose it were true that 2h ≥ k. Then h ∈ S. But h < λ. Contradiction arises.

Hence 2h < k in the first place.

The result follows.

9. Proof of Theorem (1).

Denote by Q(m) the proposition below:

• Suppose a1, a2, · · · , am are positive real numbers. Then (a1a2 · ... · am)
1
m ≤ a1 + a2 + · · ·+ am

m
. Equality holds

iff a1 = a2 = · · · = am.

Q(1) is (trivially) true.

By Lemma (4), Q(2M ) is true for any M ∈ N.

Let k ∈ N\{0, 1}. By Lemma (6), there exists some h ∈ N such that 2h < k ≤ 2h+1.

By Lemma (5), since Q(2h+1) is true, Q(2h+1 − 1) is true as well. Then, repeatedly applying Lemma (5), we deduce

that Q(2h+1 − 2) is true, Q(2h+1 − 3) is true, ..., Q(k + 1) is true, and Q(k) is true.

It follows that Q(m) is true for any m ∈ N\{0}.

10. ‘Backward induction’ method.

The argument above for the Arithmetico-geometrical Inequality is an example of ‘backward induction’.

Recall this convention on notation:

• Let N ∈ Z. JN,+∞) stands for the set {x ∈ Z : x ≥ N}.

Theorem (7). (‘Principle of “Backward induction”’.)

Let Q(n) be a predicate with variable n. Let {An}∞n=0 be a strictly increasing sequence of integers.

Suppose that all of (†), (‡), (⋆) are true:

(†) The statement Q(A0) is true.

(‡) For any k ∈ N, if the statement Q(Ak) is true then the statement Q(Ak+1) is true.

(⋆) For any m ∈ JA0,+∞), if the statement Q(m) is true then the statement Q(m− 1) is true.

Then the statement Q(n) is true for any n ∈ JA0,+∞).

Theorem (8). (Set-theoretic formulation of ‘Principle of “Backward induction”’.)

Let T be a subset of JA0,+∞). Let {An}∞n=0 be a strictly increasing sequence of integers.

Suppose that all of (†), (‡), (⋆) are true:

(†) A0 ∈ T .

(‡) For any k ∈ N, if Ak ∈ T then Ak+1 ∈ T .

(⋆) For any m ∈ JA0,+∞), if m ∈ T then m− 1 ∈ T .

Then T = JA0,+∞).

The proofs of Theorem (7), Theorem (8) are left as exercises. As statements, Theorem (7) and Theorem (8) are
logically equivalent. Theorem (7) suggests a scheme in its application; write down the scheme as an exercise. (A
concrete example on how the scheme works is illustrated by the argument in Lemma (4) and Lemma (5).)
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