
MATH1050 Cauchy-Schwarz Inequality and Triangle Inequality for square-summable sequences

0. With the help of the Bounded-Monotone Theorem and a basic result (Theorem (A)) on absolutely convergent infinite
series (which you will learn in your analysis course), both stated below, we can ‘extend’ the Cauchy-Schwarz Inequality
and Triangle Inequality to analogous results for ‘square-summable infinite sequences in R’ (Theorem (B), Theorem (C)
respectively).

1. Definition.
Let {an}∞n=0 be an infinite sequence of real numbers.

The infinite sequence


n∑

j=0

aj


∞

n=0

is called the infinite series associated to the infinite sequence {an}∞n=0.

For convenience, we usually denote the infinite sequence


n∑

j=0

aj


∞

n=0

by
∞∑
j=0

aj , or by
∑

aj .

For each k ∈ N, we refer to ak as the k-th term of the infinite series
∞∑
j=0

aj .

When the infinite sequence


n∑

j=0

aj


∞

n=0

converges in R, we may denote its limit by
∞∑

n=0

an.

Warning. It may be confusing for beginners that the same symbols ‘
∞∑
j=0

aj ’ stand for two different objects: a specific

infinite sequence which we call an infinite series, (in which the presence of the symbols ‘
∞∑
j=0

’, ‘∞’ have nothing to do

with convergence,) and the limit of that infinite sequence. But this is standard practice in any work on infinite series.

2. Definition.
Let {an}∞n=0 be an infinite sequence of real numbers.

(a) The infinite series
∞∑
j=0

aj is said to be absolutely convergent if the infinite series
∞∑
j=0

|aj | is convergent.

(b) The infinite sequence {an}∞n=0 is said to be square-summable if the infinite series
∞∑
j=0

aj
2 is convergent.

3. Bounded-Monotone Theorem for increasing infinite sequences which are bounded above.
Let {un}∞n=0 be an infinite sequence of real numbers. Suppose {un}∞n=0 is increasing and is bounded above in R.
Then {un}∞n=0 converges in R, and its limit is the supremum of the set {x ∈ R : x = un for some n ∈ N}.
Furthermore, for any upper bound β of the infinite sequence {un}∞n=0, the inequality lim

n→∞
un ≤ β holds.

Also, for any k ∈ N, the inequality uk ≤ lim
n→∞

un holds.

4. Theorem (A).
Let {vn}∞n=0 be an infinite sequence of real numbers.

Suppose the infinite series
∞∑
j=0

vj is absolutely convergent. Then the infinite series
∞∑
j=0

vj is convergent. Moreover the

inequality
∣∣∣∣∣
∞∑

n=0

vn

∣∣∣∣∣ ≤
∞∑

n=0

|vn| holds. Equality holds iff the terms of {vn}∞n=0 are all non-negative or all non-positive.

Remark. This result is often expressed as: ‘every absolutely convergent infinite series is convergent’.

5. Proof of Theorem (A).
Let {vn}∞n=0 be an infinite sequence of real numbers.
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Suppose the infinite series
∞∑
j=0

vj is absolutely convergent.

For any n ∈ N, we define v+n =
|vn|+ vn

2
and v−n =

|vn| − vn
2

.

Note that, by definition, for any n ∈ N, we have |vn| = v+n + v−n , vn = v+n − v−n , and |vn| ≥ v+n ≥ 0, |vn| ≥ v−n ≥ 0, .

[We study the infinite series
∞∑
j=0

v+j ,
∞∑
j=0

v−j . What are they really?

The infinite series
∞∑
j=0

v+j is the infinite series with all terms being non-negative, obtained from the infinite series

∞∑
j=0

vj by replacing all its negative terms by 0.

The infinite series
∞∑
j=0

v−j is the infinite series with all terms being non-negative, obtained from the infinite series

∞∑
j=0

vj by first replacing all its positive terms by 0 and then multiplying every term by −1.

So heuristically we expect ‘
∞∑
j=0

vj =

∞∑
j=0

v+j −
∞∑
j=0

v−j ’ and ‘
∞∑
j=0

|vj | =
∞∑
j=0

v+j +

∞∑
j=0

v−j ’. However, there is the

question of convergence.]

We verify that the infinite series
∞∑
j=0

v+j is convergent:

• For each k ∈ N,
k+1∑
j=0

v+j −
k∑

j=0

v+j = v+k+1 ≥ 0. Then the infinite sequence


n∑

j=0

v+j


∞

n=0

is increasing.

• For each k ∈ N,
k∑

j=0

v+j ≤
k∑

j=0

|vj | ≤
∞∑

n=0

|vn|. (Why does the second inequality hold?)

Then the infinite sequence


n∑

j=0

v+j


∞

n=0

is bounded above in R, by
∞∑

n=0

|vn|.

• Hence, by the Bounded-Monotone Theorem, the infinite sequence


n∑

j=0

v+j


∞

n=0

is convergent in R.

Similarly we verify that the infinite series
∞∑
j=0

v−j is increasing and bounded above, and therefore convergent.

We observe that the limits
∞∑
j=0

v+j ,
∞∑
j=0

v−j are both non-negative because each term in the respective infinite series is

non-negative.

Now we verify that the infinite series
∞∑
j=0

vj is convergent , and the inequality
∣∣∣∣∣
∞∑

n=0

vn

∣∣∣∣∣ ≤
∞∑

n=0

|vn| holds:

• For any k ∈ N, we have
k∑

j=0

vj =

k∑
j=0

(v+j − v−j ) =

k∑
j=0

v+j −
k∑

j=0

v−j .

Then, since both infinite series
∞∑
j=0

v+j ,
∞∑
j=0

v−j are convergent, the infinite series
∞∑
j=0

vj and is convergent.

Moreover, the equality
∞∑

n=0

vn =

∞∑
n=0

v+n −
∞∑

n=0

v−n holds.
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• For any k ∈ N, we have
k∑

j=0

|vj | =
k∑

j=0

(v+j + v−j ) =

k∑
j=0

v+j +

k∑
j=0

v−j .

Then since all three infinite series
∞∑
j=0

v+j ,
∞∑
j=0

v−j ,
k∑

j=0

|vj | are convergent, the infinite series
∞∑
j=0

vj , the equality

∞∑
n=0

|vn| =
∞∑

n=0

v+n +

∞∑
n=0

v−n holds.

• By the Triangle Inequality for real numbers, we have∣∣∣∣∣
∞∑

n=0

vn

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

n=0

v+n −
∞∑

n=0

v−n

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑

n=0

v+n

∣∣∣∣∣+
∣∣∣∣∣
∞∑

n=0

v−n

∣∣∣∣∣ =
∞∑

n=0

v+n +

∞∑
n=0

v−n =

∞∑
n=0

|vn|.

The argument for the necessary and sufficient conditions for the equality
∣∣∣∣∣
∞∑

n=0

vn

∣∣∣∣∣ =
∞∑

n=0

|vn| to hold is left as an exercise.

6. Theorem (B). (Cauchy-Schwarz Inequality for ‘square-summable infinite sequences in R’.)
Let {xn}∞n=0, {yn}∞n=0 be infinite sequences of real numbers, neither of them being the zero sequence.

Suppose {xn}∞n=0, {yn}∞n=0 are square-summable. Then the infinite series
∞∑
j=0

xjyj is absolutely convergent, and the

statements below hold:

(a) The inequality
∣∣∣∣∣
∞∑

n=0

xnyn

∣∣∣∣∣ ≤
( ∞∑

n=0

xn
2

) 1
2
( ∞∑

n=0

yn
2

) 1
2

holds.

(b) The statements (⋆1), (⋆2) are logically equivalent:

(⋆1)

∣∣∣∣∣
∞∑

n=0

xnyn

∣∣∣∣∣ =
( ∞∑

n=0

xn
2

) 1
2
( ∞∑

n=0

yn
2

) 1
2

.

(⋆2) There exist some p, q ∈ R, not both zero, such that pxj + qyj = 0 for any j ∈ N. (The infinite sequences
{xn}∞n=0, {yn}∞n=0 are ‘linearly dependent over R’.)

Remark. In the context of the statement of Theorem (B), if one of the infinite sequences {xn}∞n=0, {yn}∞n=0 is the
zero sequence, then the inequality in (a) trivially reduces to the equality in (⋆1) of (b).

7. Proof of Theorem (B).
Let {xn}∞n=0, {yn}∞n=0 be infinite sequences of real numbers, neither of them being the zero sequence.
Suppose {xn}∞n=0, {yn}∞n=0 are square-summable.

We verify that the infinite series
∞∑
j=0

xjyj is absolutely convergent:

• The infinite sequence


n∑

j=0

|xjyj |


∞

n=0

is increasing. (Why?)

• For each n ∈ N, by the Cauchy-Schwarz Inequality, the inequality
n∑

j=0

|xjyj | ≤

 n∑
j=0

xj
2

 1
2
 n∑

j=0

yj
2

 1
2

holds.

Also, by assumption, the inequalities
n∑

j=0

xj
2 ≤

∞∑
j=0

xj
2,

n∑
j=0

yj
2 ≤

∞∑
j=0

yj
2 hold. (Why?)

Therefore the infinite sequence


n∑

j=0

|xjyj |


∞

n=0

is bounded above by
( ∞∑

n=0

xn
2

) 1
2
( ∞∑

n=0

yn
2

) 1
2

.

• Hence by the Bounded-Monotone Theorem, the infinite series
∞∑
j=0

|xjyj | is convergent.

Moreover, the inequality
∞∑

n=0

|xnyn| ≤

( ∞∑
n=0

xn
2

) 1
2
( ∞∑

n=0

yn
2

) 1
2

holds.
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By definition, the infinite series
∞∑
j=0

xjyj is absolutely convergent.

(a) By Theorem (A), the infinite series
∞∑
j=0

xjyj is convergent, and the inequality
∣∣∣∣∣
∞∑

n=0

xnyn

∣∣∣∣∣ ≤
∞∑

n=0

|xnyn| holds.

Hence
∣∣∣∣∣
∞∑

n=0

xnyn

∣∣∣∣∣ ≤
∞∑

n=0

|xnyn| ≤

( ∞∑
n=0

xn
2

) 1
2
( ∞∑

n=0

yn
2

) 1
2

.

(b) i. [(⋆2) =⇒ (⋆1)?]
Suppose there exist some p, q ∈ R, not both zero, such that pxj + qyj = 0 for any j ∈ N.
Without loss of generality, assume p ̸= 0.

Then
∣∣∣∣∣
∞∑

n=0

xnyn

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

n=0

−q

p
· yn2

∣∣∣∣∣ = |q|
|p|

∞∑
n=0

yn
2 =

( ∞∑
n=0

|q|2

|p|2
· yn2

) 1
2
( ∞∑

n=0

yn
2

) 1
2

=

( ∞∑
n=0

xn
2

) 1
2
( ∞∑

n=0

yn
2

) 1
2

.

ii. [(⋆1) =⇒ (⋆2)?]

Suppose
∣∣∣∣∣
∞∑

n=0

xnyn

∣∣∣∣∣ =
( ∞∑

n=0

xn
2

) 1
2
( ∞∑

n=0

yn
2

) 1
2

.

Then
∣∣∣∣∣
∞∑

n=0

xnyn

∣∣∣∣∣ =
∞∑

n=0

|xnyn|, and
∞∑

n=0

|xnyn| =

( ∞∑
n=0

xn
2

) 1
2
( ∞∑

n=0

yn
2

) 1
2

.

By the former, the terms of {xnyn}∞n=0 are all non-negative or all non-positive.
Without loss of generality, assume the terms of {xnyn}∞n=0 are all non-negative.

Then
∞∑

n=0

xnyn =

( ∞∑
n=0

xn
2

) 1
2
( ∞∑

n=0

yn
2

) 1
2

. Therefore
( ∞∑

n=0

xnyn

)2

=

( ∞∑
n=0

xn
2

)( ∞∑
n=0

yn
2

)
.

Define the polynomial f(t) by f(t) =

( ∞∑
n=0

xn
2

)
t2 + 2

( ∞∑
n=0

xnyn

)
t+

( ∞∑
n=0

yn
2

)
.

f(t) is a quadratic polynomial with real coefficient. Its discriminant is 0. Then f(t) has exactly one repeated
real root, which we denote by r. We have

0 = f(r) =

( ∞∑
n=0

xn
2

)
r2 + 2

( ∞∑
n=0

xnyn

)
r +

( ∞∑
n=0

yn
2

)
=

∞∑
n=0

(xn
2r2 + 2xnynr + yn

r) =

∞∑
n=0

(xnr + yn)
2.

Then, for any n ∈ N, we have rxn + 1 · yn = 0.

8. Theorem (C). (Triangle Inequality for ‘square-summable infinite sequences in R’.)
Let {xn}∞n=0, {yn}∞n=0 be infinite sequences of real numbers, neither of them being the zero sequence.
Suppose {xn}∞n=0, {yn}∞n=0 are square-summable. Then the infinite sequence {xn + yn}∞n=0 is square-summable, and
the statements below hold:

(a) The inequality
[ ∞∑
n=0

(xn + yn)
2

] 1
2

≤

( ∞∑
n=0

xn
2

) 1
2

+

( ∞∑
n=0

yn
2

) 1
2

holds.

(b) The statements (∗1), (∗2) are logically equivalent:

(∗1)

[ ∞∑
n=0

(xn + yn)
2

] 1
2

=

( ∞∑
n=0

xn
2

) 1
2

+

( ∞∑
n=0

yn
2

) 1
2

.

(∗2) There exist non-negative real numbers s, t, not both zero, such that sxj = tyj for any j ∈ N. (One of the
infinite sequences {xn}∞n=0, {yn}∞n=0 is a non-negative scalar multiple of the other.)

Remark. In the context of the statement of Theorem (C), if one of the infinite sequences {xn}∞n=0, {yn}∞n=0 is the zero

sequence, then the inequality in (a) trivially reduces to the equality in (∗1) of (b).

The proof of Theorem (C), as an application of Theorem (C), can be done in a similar way as the proof of the Triangle
Inequality for real vectors as an application of the Cauchy-Schwarz Inequality for real vectors.
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