MATH1050 Cauchy-Schwarz Inequality and Triangle Inequality for square-summable sequences

0. With the help of the Bounded-Monotone Theorem and a basic result (Theorem (A)) on absolutely convergent infinite series (which you will learn in your *analysis* course), both stated below, we can 'extend' the Cauchy-Schwarz Inequality and Triangle Inequality to analogous results for 'square-summable infinite sequences in R' (Theorem (B), Theorem (C) respectively).

1. **Definition.**

Let ${a_n}_{n=0}^{\infty}$ *be an infinite sequence of real numbers.*

The infinite sequence $\sqrt{ }$ Į \mathcal{L} $\sum_{n=1}^{n}$ *j*=0 *aj* \mathcal{L} \mathcal{L} $\left\vert \right\vert$ *∞ n*=0 *is called the infinite series associated to the infinite sequence* $\{a_n\}_{n=0}^{\infty}$.

For convenience, we usually denote the infinite sequence $\sqrt{ }$ $\frac{1}{2}$ \mathcal{L} $\sum_{n=1}^{n}$ *j*=0 *aj* \mathcal{L} \mathcal{L} $\left\vert \right\vert$ *∞ n*=0 $by \sum_{i=1}^{\infty}$ *j*=0 a_j , or by $\sum a_j$.

For each $k \in \mathbb{N}$, we refer to a_k as the *k*-th term of the infinite series $\sum_{i=1}^{\infty} a_i$. *j*=0

When the infinite sequence $\sqrt{ }$ Į \mathcal{L} $\sum_{n=1}^{n}$ *j*=0 *aj* \mathcal{L} \mathcal{L} \int *∞ converges in* ^R*, we may denote its limit by* ^X*[∞] n*=0 *n*=0 *an.*

Warning. It may be confusing for beginners that the same symbols $\sum_{n=1}^{\infty}$ *j*=0 a_j ' stand for two different objects: a specific

infinite sequence which we call an infinite series, (in which the presence of the symbols ' \sum^{∞} ', ' ∞ ' have nothing to do *j*=0

with convergence,) and the limit of that infinite sequence. But this is standard practice in any work on infinite series.

2. **Definition.**

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers.

(a) The infinite series
$$
\sum_{j=0}^{\infty} a_j
$$
 is said to be **absolutely convergent** if the infinite series $\sum_{j=0}^{\infty} |a_j|$ is convergent.

(b) The infinite sequence $\{a_n\}_{n=0}^{\infty}$ is said to be **square-summable** if the infinite series \sum^{∞} *j*=0 *aj* 2 *is convergent.*

3. **Bounded-Monotone Theorem for increasing infinite sequences which are bounded above.**

Let $\{u_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers. Suppose $\{u_n\}_{n=0}^{\infty}$ is increasing and is bounded above in \mathbb{R} . Then $\{u_n\}_{n=0}^{\infty}$ converges in $\mathbb R$, and its limit is the supremum of the set $\{x \in \mathbb R : x = u_n \text{ for some } n \in \mathbb N\}$. Furthermore, for any upper bound β of the infinite sequence $\{u_n\}_{n=0}^{\infty}$, the inequality $\lim_{n\to\infty} u_n \leq \beta$ holds. *Also, for any* $k \in \mathbb{N}$ *, the inequality* $u_k \leq \lim_{n \to \infty} u_n$ *holds.*

4. **Theorem (A).**

Let $\{v_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers.

Suppose the infinite series $\sum_{n=1}^{\infty}$ *j*=0 v_j *is absolutely convergent. Then the infinite series* $\sum_{n=1}^{\infty}$ *j*=0 *v^j is convergent. Moreover the inequality* X*∞ n*=0 *vn ≤* X*∞ n*=0 *|v_n | holds. Equality holds iff the terms of* $\{v_n\}_{n=0}^{\infty}$ *are all non-negative or all non-positive.*

Remark. This result is often expressed as: 'every absolutely convergent infinite series is convergent'.

5. **Proof of Theorem (A).**

Let $\{v_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers.

Suppose the infinite series \sum^{∞} *j*=0 v_j is absolutely convergent.

For any $n \in \mathbb{N}$, we define $v_n^+ = \frac{|v_n| + v_n}{2}$ $\frac{1 + v_n}{2}$ and $v_n^- = \frac{|v_n| - v_n}{2}$ $\frac{c_n}{2}$. Note that, by definition, for any $n \in \mathbb{N}$, we have $|v_n| = v_n^+ + v_n^-$, $v_n = v_n^+ - v_n^-$, and $|v_n| \ge v_n^+ \ge 0$, $|v_n| \ge v_n^- \ge 0$, .

[We study the infinite series \sum^{∞} *j*=0 v_j^+, \sum^∞ *j*=0 v_j^- . What are they really?

The infinite series $\sum_{n=1}^{\infty}$ *j*=0 v_j^+ is the infinite series with all terms being non-negative, obtained from the infinite series

X*∞ j*=0 v_j by replacing all its negative terms by 0.

The infinite series \sum^{∞} *j*=0 v_j^- is the infinite series with all terms being non-negative, obtained from the infinite series X*∞*

j=0 *v^j* by first replacing all its positive terms by 0 and then multiplying every term by *−*1.

So heuristically we expect ' \sum^{∞} *j*=0 $v_j = \sum_{i=1}^{\infty}$ *j*=0 $v_j^+ - \sum_{i=1}^\infty$ *j*=0 v_j^- ' and ' $\sum_{i=1}^{\infty}$ *j*=0 $|v_j| = \sum_{i=1}^{\infty}$ *j*=0 v_j^+ + \sum^∞ *j*=0 v_j^- '. However, there is the question of convergence.]

We verify that the infinite series \sum^{∞} *j*=0 v_j^+ is convergent:

- For each $k \in \mathbb{N}$, *k* \sum $^{+1}$ *j*=0 v_j^+ − \sum *k j*=0 $v_j^+ = v_{k+1}^+ \geq 0$. Then the infinite sequence $\sqrt{ }$ $\left\langle \right\rangle$ \mathcal{L} $\sum_{n=1}^{n}$ *j*=0 v_j^+ \mathcal{L} \mathcal{L} $\left\vert \right\vert$ *∞ n*=0 is increasing.
- For each $k \in \mathbb{N}, \sum$ *k j*=0 $v_j^+ \le \sum$ *k j*=0 *|v*_{*j*} $| \leq \sum_{i}$ ∞ *n*=0 $|v_n|$. (Why does the second inequality hold?)

Then the infinite sequence $\sqrt{ }$ $\left\langle \right\rangle$ \mathcal{L} $\sum_{n=1}^{n}$ *j*=0 v_j^+ λ \mathcal{L} $\left\vert \right\vert$ [∞] is bounded above in **R**, by \sum^{∞} *n*=0 *n*=0 $|v_n|$.

• Hence, by the Bounded-Monotone Theorem, the infinite sequence $\sqrt{ }$ $\left\langle \right\rangle$ \mathcal{L} $\sum_{n=1}^{n}$ *j*=0 v_j^+ \mathcal{L} \mathcal{L} $\left\vert \right\vert$ *∞ n*=0 is convergent in R.

Similarly we verify that the infinite series \sum^{∞} *j*=0 v_j^- is increasing and bounded above, and therefore convergent.

We observe that the limits $\sum_{n=1}^{\infty}$ *j*=0 $v_j^+,$ \sum^∞ *j*=0 v_j^- are both non-negative because each term in the respective infinite series is non-negative.

Now we verify that the infinite series \sum^{∞} *j*=0 v_j is convergent, and the inequality X*∞ n*=0 *vn ≤* X*∞ n*=0 *|vn|* holds:

• For any $k \in \mathbb{N}$, we have \sum *k j*=0 $v_j = \sum$ *k j*=0 $(v_j^+ - v_j^-) = \sum$ *k j*=0 *v*⁺ − ∑ *k j*=0 v_j^- .

Then, since both infinite series \sum^{∞} *j*=0 v_j^+ , \sum^∞ *j*=0 v_j^- are convergent, the infinite series \sum^{∞} *j*=0 *v^j* and is convergent.

Moreover, the equality
$$
\sum_{n=0}^{\infty} v_n = \sum_{n=0}^{\infty} v_n^+ - \sum_{n=0}^{\infty} v_n^-
$$
 holds.

• For any
$$
k \in \mathbb{N}
$$
, we have
$$
\sum_{j=0}^{k} |v_j| = \sum_{j=0}^{k} (v_j^+ + v_j^-) = \sum_{j=0}^{k} v_j^+ + \sum_{j=0}^{k} v_j^-.
$$

Then since all three infinite series $\sum_{n=1}^{\infty}$ *j*=0 v_j^+ , \sum^∞ *j*=0 $v_j^-,\,\sum$ *k j*=0 *|v*_{*j*} | are convergent, the infinite series $\sum_{}^{\infty}$ *j*=0 v_j , the equality

$$
\sum_{n=0}^{\infty} |v_n| = \sum_{n=0}^{\infty} v_n^+ + \sum_{n=0}^{\infty} v_n^-
$$
 holds.

• By the Triangle Inequality for real numbers, we have

$$
\left| \sum_{n=0}^{\infty} v_n \right| = \left| \sum_{n=0}^{\infty} v_n^+ - \sum_{n=0}^{\infty} v_n^- \right| \le \left| \sum_{n=0}^{\infty} v_n^+ \right| + \left| \sum_{n=0}^{\infty} v_n^- \right| = \sum_{n=0}^{\infty} v_n^+ + \sum_{n=0}^{\infty} v_n^- = \sum_{n=0}^{\infty} |v_n|.
$$

The argument for the necessary and sufficient conditions for the equality X*∞ n*=0 *vn* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ = X*∞ n*=0 $|v_n|$ to hold is left as an exercise.

6. **Theorem (B). (Cauchy-Schwarz Inequality for 'square-summable infinite sequences in** R**'.)**

Let $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ be infinite sequences of real numbers, neither of them being the zero sequence.

Suppose $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ are square-summable. Then the infinite series $\sum_{n=0}^{\infty}$ *j*=0 *xjy^j is absolutely convergent, and the*

statements below hold:

(a) The inequality
$$
\left| \sum_{n=0}^{\infty} x_n y_n \right| \le \left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}
$$
 holds.

(b) The statements (\star_1) , (\star_2) are logically equivalent:

$$
(\star_1)\left|\sum_{n=0}^{\infty}x_ny_n\right|=\left(\sum_{n=0}^{\infty}x_n^2\right)^{\frac{1}{2}}\left(\sum_{n=0}^{\infty}y_n^2\right)^{\frac{1}{2}}.
$$

(*⋆*2) *There exist some p, q ∈* R*, not both zero, such that px^j* + *qy^j* = 0 *for any j ∈* N*. (The infinite sequences* ${x_n}_{n=0}^{\infty}$, ${y_n}_{n=0}^{\infty}$ *are 'linearly dependent over* R'.)

Remark. In the context of the statement of Theorem (B), if one of the infinite sequences $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ is the zero sequence, then the inequality in (a) trivially reduces to the equality in (\star_1) of (b).

7. **Proof of Theorem (B).**

Let $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ be infinite sequences of real numbers, neither of them being the zero sequence. Suppose $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ are square-summable.

We verify that the infinite series \sum^{∞} *j*=0 $x_j y_j$ is absolutely convergent:

- The infinite sequence $\sqrt{ }$ Į \mathcal{L} $\sum_{n=1}^{n}$ *j*=0 $|x_jy_j|$ \mathcal{L} \mathcal{L} \int *∞ n*=0 is increasing. (Why?)
- For each $n \in \mathbb{N}$, by the Cauchy-Schwarz Inequality, the inequality $\sum_{n=1}^{\infty}$ *|xjy^j | ≤* $\sqrt{ }$ $\left(\sum_{n=1}^{n}$ x_j^2 $\overline{1}$ $rac{1}{2}$ $\left(\sum_{n=1}^{n}$

Also, by assumption, the inequalities
$$
\sum_{j=0}^{n} x_j^2 \leq \sum_{j=0}^{\infty} x_j^2
$$
, $\sum_{j=0}^{n} y_j^2 \leq \sum_{j=0}^{\infty} y_j^2$ hold. (Why?) Therefore the infinite sequence $\left\{ \sum_{j=0}^{n} |x_j y_j| \right\}_{n=0}^{\infty}$ is bounded above by $\left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}.$

j=0

j=0

j=0

 y_j^2 $\overline{1}$ $\frac{1}{2}$

holds.

• Hence by the Bounded-Monotone Theorem, the infinite series ^X*[∞] j*=0 $|x_j y_j|$ is convergent.

Moreover, the inequality
$$
\sum_{n=0}^{\infty} |x_n y_n| \le \left(\sum_{n=0}^{\infty} x_n^2\right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2\right)^{\frac{1}{2}} \text{ holds.}
$$

By definition, the infinite series \sum^{∞} *j*=0 $x_j y_j$ is absolutely convergent.

(a) By Theorem (A), the infinite series \sum^{∞} *j*=0 $x_j y_j$ is convergent, and the inequality X*∞ n*=0 *xnyⁿ ≤* X*∞ n*=0 $|x_n y_n|$ holds. Hence X*∞ n*=0 *xnyⁿ ≤* X*∞ n*=0 $|x_n y_n| \leq \left(\sum_{n=1}^{\infty} \right)$ *n*=0 $\binom{x_n^2}{2}^{\frac{1}{2}}\left(\sum_{n=1}^\infty\right)$ *n*=0 $y_n^2\right)^{\frac{1}{2}}$.

(b) i. $[(\star_2) \Longrightarrow (\star_1)?]$

Suppose there exist some $p, q \in \mathbb{R}$, not both zero, such that $px_j + qy_j = 0$ for any $j \in \mathbb{N}$. Without loss of generality, assume $p \neq 0$.

Then
$$
\left| \sum_{n=0}^{\infty} x_n y_n \right| = \left| \sum_{n=0}^{\infty} -\frac{q}{p} \cdot y_n^2 \right| = \frac{|q|}{|p|} \sum_{n=0}^{\infty} y_n^2 = \left(\sum_{n=0}^{\infty} \frac{|q|^2}{|p|^2} \cdot y_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}} = \left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}.
$$

ii. $[(\star_1) \Longrightarrow (\star_2)^2]$

Suppose
$$
\left| \sum_{n=0}^{\infty} x_n y_n \right| = \left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}.
$$

\nThen $\left| \sum_{n=0}^{\infty} x_n y_n \right| = \sum_{n=0}^{\infty} |x_n y_n|$, and $\sum_{n=0}^{\infty} |x_n y_n| = \left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}.$
\nBy the former, the terms of $\{x_n y_n\}_{n=0}^{\infty}$ are all non-negative or all non-positive.

Without loss of generality, assume the terms of $\{x_n y_n\}_{n=0}^{\infty}$ are all non-negative.

Then
$$
\sum_{n=0}^{\infty} x_n y_n = \left(\sum_{n=0}^{\infty} x_n^2\right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2\right)^{\frac{1}{2}}.
$$
 Therefore
$$
\left(\sum_{n=0}^{\infty} x_n y_n\right)^2 = \left(\sum_{n=0}^{\infty} x_n^2\right) \left(\sum_{n=0}^{\infty} y_n^2\right).
$$
 Define the polynomial $f(t)$ by $f(t) = \left(\sum_{n=0}^{\infty} x_n^2\right) t^2 + 2 \left(\sum_{n=0}^{\infty} x_n y_n\right) t + \left(\sum_{n=0}^{\infty} y_n^2\right).$

 $f(t)$ is a quadratic polynomial with real coefficient. Its discriminant is 0. Then $f(t)$ has exactly one repeated real root, which we denote by *r*. We have

$$
0 = f(r) = \left(\sum_{n=0}^{\infty} x_n^2\right) r^2 + 2\left(\sum_{n=0}^{\infty} x_n y_n\right) r + \left(\sum_{n=0}^{\infty} y_n^2\right) = \sum_{n=0}^{\infty} (x_n^2 r^2 + 2x_n y_n r + y_n^r) = \sum_{n=0}^{\infty} (x_n^2 r^2 + 2x_n^2 r^2 + 2x_n^2 r^2 + y_n^r)
$$

Then, for any $n \in \mathbb{N}$, we have $rx_n + 1 \cdot y_n = 0$.

8. **Theorem (C). (Triangle Inequality for 'square-summable infinite sequences in** R**'.)**

Let ${x_n}_{n=0}^{\infty}$, ${y_n}_{n=0}^{\infty}$ be infinite sequences of real numbers, neither of them being the zero sequence.

Suppose $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ are square-summable. Then the infinite sequence $\{x_n+y_n\}_{n=0}^{\infty}$ is square-summable, and *the statements below hold:*

(a) The inequality
$$
\left[\sum_{n=0}^{\infty} (x_n + y_n)^2\right]^{\frac{1}{2}} \le \left(\sum_{n=0}^{\infty} x_n^2\right)^{\frac{1}{2}} + \left(\sum_{n=0}^{\infty} y_n^2\right)^{\frac{1}{2}}
$$
 holds.

(b) *The statements* (*∗*1)*,* (*∗*2) *are logically equivalent:*

$$
(*)\left[\sum_{n=0}^{\infty} (x_n + y_n)^2\right]^{\frac{1}{2}} = \left(\sum_{n=0}^{\infty} x_n^2\right)^{\frac{1}{2}} + \left(\sum_{n=0}^{\infty} y_n^2\right)^{\frac{1}{2}}.
$$

 $(*_2)$ There exist non-negative real numbers *s*, *t*, not both zero, such that $sx_j = ty_j$ for any $j \in \mathbb{N}$. (One of the *infinite sequences* $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ *is a non-negative scalar multiple of the other.*)

Remark. In the context of the statement of Theorem (C), if one of the infinite sequences $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ is the zero sequence, then the inequality in (a) trivially reduces to the equality in $(*_1)$ of (b).

The proof of Theorem (C), as an application of Theorem (C), can be done in a similar way as the proof of the Triangle Inequality for real vectors as an application of the Cauchy-Schwarz Inequality for real vectors.