0. Refer to the Handout Quadratic polynomials.

1. Definition. (Absolute extrema for real-valued functions of one real vari-

able.)

Let I be an interval, and h : D — IR be a real-valued function of one real variable with
domain D which contains I entirely. Let p be a point in I.

(a) h is said to attain absolute maximum at p on [ if for any x € I, the inequality
h(xz) < h(p) holds.

The number h(p) is called the absolute maximum value of i on I.

(b) h is said to attain absolute minimum at p on [ if for any x € I, the inequality
h(x) > h(p) holds.

The number h(p) is called the absolute minimum value of h on .
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.Theorem (1). (Absolute extrema for quadratic functions.)
Let a,b;c € R, with a # 0.
Let f : R — R be the quadratic function given by f(z) = ax®+ bx +c for any = € R.
Denote the discriminant of f(x) by Ay. |

| b
(a) Suppose a > 0. Then f attains absolute minimum at 5 on IR, with absolute
a
- Ay
minimum value ———-.
4a,
b
(b) Suppose a < 0. Then f attains absolute maximum at 5 on IR, with absolute
| a
. Ay
maximum value ———-.
4a
Proof. Let a,b,c € R, with a > 0. Let f : R — IR be the quadratic function
given by f(z) = az® + bz + ¢ for any 2 € IR. Denote the discriminant of f(x) by Ay
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3. Theorem (2), as a Corollary to Theorem (1).
Let a,b,c € R. |

Suppose a > 0, Ar = b> — 4dac, and f : R — R is the quadratic polynomial function
defined by f(z) = ax* + bx + ¢ for any x € R.

Then the statements (1), (1) are logically equivalent:

(1) f(z) >0 for any x € R.
() Ap<o.

b
Equality in (1) holds iff —5 is a repeated real root of the polynomial f(x).
" |

Remark. This result will play a key role in the proof of the Cauchy-schwarz Inequality.



Proof of Theorem (2).

Let a,b,c € R. Suppose a > 0, Ay = b>—4ac, and f : R — R is the quadratic polynomial
function defined by f(x) = ax?® + bx + ¢ for any = € IR.

—

' b b A,
By Theorem (1), f attams absolute minimum value at —2=, with f(—=—) = —eeil
_ 2a’ 2a da,
o [(T) = (1)7] Suppose f(z) > 0 for any z € R
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This happens iff — 5. is a repeated real root of the polynomial f(z).
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4. Theorem (3). (Cauchy-Schwarz Inequality for ‘real vectors’)
Let x1, 29, ,Tn, Y1, Y2, - ,Yn € IR.
Suppose x1, To, - -+ , X, are not all zero and y1,y9, - - - , Yy, are not all zero.
Then the statements below hold:

1
2

n n 2 n
(a) The inequality Z z;y,| < Z x° Z y;i* | holds.
j=1 j=1 j=1

(b) The statements (*1), (o) are logically equivalent:

_ 2 2
(1) E iy, = E -z E yi |
=1 =1 =1

(x2) There exist some p,q € IR\{0} such that px1 + qy1 = 0, pxs + qys = 0,
PTy + qYn = 0.

..., and



Remarks.

(1) In the context of the statement of Theorem (3), if

then the inequality in (a) trivially reduces to the equality in (1) of (b).

(2) We may re-formulate Theorem (3) in the language of linear algebra, and cover the trivial
cases mentioned above:

Let L1, L2, yTn, Y1,Y2," " yYn c R.
L1 Y1
. n L2 Y2
Suppose X, y are vectors in R" defined by x = | |,y =
_xn_ _yn_

Then the statements below hold:

(2) |y < lx[yl-

(b) Equality holds iff x, y are linearly dependent over IR.



5. Theorem (4). (Triangle Inequality for ‘real vectors’.)
Let x1, 29, ,Tn, Y1, Y2, - ,Yn € IR.
Suppose x1, To, - -+ , X, are not all zero and y1,y9, - - - , Yy, are not all zero.
Then the statements below hold:

n

(a) The inequality Z (; +y)° | < Zxﬁ + Zyjz holds.
j=1 j=1

J=1

1 1 1
2 2 2

(b) The statements (x1), (xq) are logically equivalent:

n

n 2 n
) D (i)’ = (D o2 + Dy
j=1 j=1

j=1

DO —

1
2

(%2) There exist s > 0,t > 0 such that sx1 = ty;, sxo = tys, ..., and sx, = ty,.



Remarks.

(1) In the context of the statement of Theorem (4), if

then the inequality in (a) trivially reduces to the equality in (1) of (b).

(2) We may re-formulate Theorem (4) in the language of linear algebra, and cover the trivial
cases described above:

Let L1, L2, yTn, Y1,Y2," " yYn c R.
L1 Y1
. n L2 Y2
Suppose X, y are vectors in R" defined by x = | |,y =
_xn_ _yn_

Then the statements below hold:

() x+yll < lIx[l + [yl

(b) Equality holds iff one of x, y is a non-negative scalar multiple of the other.
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6. Proof of Theorem (3): ‘special case “n =2” ’ only.

Let 21, 29, Y1, ys € R. Suppose 21, 72 are not all zero and y;, y are not all zero,
(a) Define the function F : R — R by F(t) = (z1t +31)° + w for any t € R.
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Proof of Theorem (3): ‘special case “n = 2" ’ only.

Let 1, T2, Y1, y2 € R. Suppose z1, To are not all zero and ¥y, yo are not all zero.

(a) Define the function ' : R — R by F/(¢) = (z1t + y1)* + (zat + 7p)? for any t € IR.
(b> 1. [(*1) == (*2)?] Albso \-QU\“\ fs Xl'('x)— B- 2(X7+Xl7z>

C-= I "‘“’ ) A= B YAC/
Suppose |T1y1 + Tays| = (z1% + 29 2)
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7. Proof of Theorem (4). Exercise.

8. There is a pair of results about definite integrals which is known as the Cauchy-Schwarz
Inequality and the Triangle Inequality.

They can be proved in a similar way as Theorem (3), Theorem (4) respectively, with the
extra help of a result on definite integrals:

Theorem (5).
Let a, b be real numbers, with a < b, and h : [a,b] — IR be a function.

Suppose h is continuous on [a,b] and h(u) > 0 for any u € [a, b].

b
Then the inequality / h(u)du > 0 holds.

Moreover, equality holds iff ( h(u) = 0 for any u € [a, b]).

Remark. Geometric interpretation?
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9. Theorem (6). (Cauchy-Schwarz Inequality for definite integrals.)

Let a,b be real numbers, with a < b, and f, g : |a,b] — R be functions. Suppose neither
f nor g is constant zero on |a, b|.

Suppose f, g are continuous on |a, b|. Then the statements below hold:

/abf(U)g(u)du < /ab(f(u)>2du] % [/ab(g(u))zdu] holds

(b) The statements (%1), (x2) are logically equivalent:
1
3

[ 1w [ / b<f<u>>2du] [ / b<g<u>>2du] |

(x2) There exist some p,q € R\{0} such that pf(u) + gg(u) = 0 for any u € |a,b|. (The
functions f, g are ‘linearly dependent over R’)

DO —

(a) The inequality

1
2
*1

Remark. In the context of the statement of Theorem (6), if one of the functions f, g

)

is constant zero on |a, b, then the inequality in (a) trivially reduces to the equality in (1)

of (b).



10. Theorem (7). (Triangle Inequality for definite integrals.)
Let a,b be real numbers, with a < b, and f, g : |a,b] — R be functions. Suppose neither

f nor g is constant zero on |a, b|.

Suppose f, g are continuous on |a, b|. Then the statements below hold:

b b
(a) The inequality [/ (f(u) +g(u))2du] < !/ (f(u))*du

e statements (*1), (*9) are logically equivalent:
(b) Th (*1), (x2) are logically I
b b b
) | [ )+ gtwPau| = | [(fw)Pdu| + ]| [ gwydul
(%2) There exist some s > 0, t > 0 such that sf(u) = tg(u). (One of the functions f, g is
a non-negative scalar multiple of the other.)

1
2

b
/ (g(u))Qdu] holds.

1
2

_|_

1
2

D[ —

2

+

Remark. In the context of the statement of Theorem (7), if one of the functions f, g
is constant zero on [a, b], then the inequality in (a) trivially reduces to the equality in (%)

of (b).

Theorem (7) can be deduced from Theorem (6) in the same way as Theorem (4) is deduced
from Theorem (3).



11. Proof of Theorem (6).

Let a,b be real numbers, with a < b, and f, g : [a,b] — R be functions. Suppose neither
f nor g is identically zero on [a, b]. Suppose f, g are continuous on a, b].
(a) Define the function F': R — R by F(t) = / b(t f(w) + g(u))*du for any ¢t € R.
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Proof of Theorem (6).

Let a, b be real numbers, with a < b, and f, g : [a,b] — IR be functions. Suppose neither
f nor g is identically zero on [a, b]. Suppose f, g are continuous on [a, b].

b
(a) Define the function F': R — R by F (£) = / (tf(u) + g(u))2du for any ¢t € R.
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Proof of Theorem (6).

Let a, b be real numbers, with a < b, and f, g : [a,b] — R be functions. Suppose neither
f nor g is identically zero on [a, b]. Suppose f, g are continuous on [a, b].

b
(a) Define the function F' : R — R by F'(t) = / (tf(u) + g(uw))*du for any t € R.

(b) i [(%1) = (k)7] - 2eedl + A= LY, Bo2f e ]
L (%) = (%1)7] L o = J8 (RE)dw, 2= B -AC

Suppose there exist some p,q € R\{0} such that for any x € [a,b|, the equality
pf(z) + qg(z) = 0 holds.
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12. Appendix 1. Cauchy-Schwarz Inequality and Triangle Inequality for ‘square-
summable infinite sequences of real numbers’.

With the help of the Bounded-Monotone Theorem and the notion of absolute convergence

for infinite series, we can ‘extend’ the Cauchy-Schwarz Inequality and Triangle Inequality
to analogous results for ‘square-summable infinite sequences in IR’

13. Appendix 2: Further generalizations.

(a) There are ‘complex analogues’ for the ‘real versions’ of Cauchy-Schwarz Inequalities (The-
orem (3), Theorem (6)) and Triangle Inequalities (Theorem (4), Theorem (7)) stated
here.

(b) The Cauchy-Schwarz Inequality for ‘real vectors’ can be seen as a special case of Holder’s
Inequality for ‘real vectors’ The Triangle Inequality for ‘real vectors’ can be seen as a spe-
cial case of Minkowski’s Inequality for ‘real vectors’ You will encounter these inequalities
in advanced courses in mathematical analysis.





