0. Refer to the Handout Quadratic polynomials.

1. Definition. (Absolute extrema for real-valued functions of one real variable.)

Let I be an interval, and $h: D \longrightarrow \mathbb{R}$ be a real-valued function of one real variable with domain D which contains I entirely. Let p be a point in I .

(a) h is said to attain absolute maximum at p on I if for any $x \in I$, the inequality $h(x) \leq h(p)$ holds.

The number $h(p)$ is called the absolute maximum value of h on I.

(b) h is said to attain absolute minimum at p on I if for any $x \in I$, the inequality $h(x) \geq h(p)$ holds.

The number $h(p)$ is called the absolute minimum value of h on I.

2. Theorem (1). (Absolute extrema for quadratic functions.) Let $a, b, c \in \mathbb{R}$, with $a \neq 0$.

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the quadratic function given by $f(x) = ax^2 + bx + c$ for any $x \in \mathbb{R}$. Denote the discriminant of $f(x)$ by Δ_f .

(a) Suppose $a > 0$. Then f attains absolute minimum at $-\frac{b}{2a}$ on \mathbb{R} , with absolute minimum value $-\frac{\Delta_f}{4a}$.

(b) Suppose $a < 0$. Then f attains absolute maximum at $-\frac{b}{2a}$ on R, with absolute maximum value $-\frac{\Delta_f}{4a}$.

Let $a, b, c \in \mathbb{R}$, with $a > 0$. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the quadratic function Proof. given by $f(x) = ax^2 + bx + c$ for any $x \in \mathbb{R}$. Denote the discriminant of $f(x)$ by Δ_f For any $x \in \mathbb{R}$, we have $f(x) = ax^2 + bx + c = ... = a(x + \frac{b}{2a})^2 - \frac{\Delta_{f}}{u}$ (a) Suppose as o. Then $f(x) \ge f(-\frac{b}{2a}) = -\frac{\Delta f}{4a}$ for any $x \in \mathbb{R}$. (b) Suppose $a < 0$. Then $f(x) \le f(-\frac{b}{2a}) = -\frac{\Delta_{f}}{4a}$ for any $x \in \mathbb{R}$, The result follows.

3. Theorem (2) , as a Corollary to Theorem (1) .

Let $a, b, c \in \mathbb{R}$. Suppose $a > 0$, $\Delta_f = b^2 - 4ac$, and $f : \mathbb{R} \longrightarrow \mathbb{R}$ is the quadratic polynomial function defined by $f(x) = ax^2 + bx + c$ for any $x \in \mathbb{R}$. Then the statements $(†)$, $(†)$ are logically equivalent: $f(x) \geq 0$ for any $x \in \mathbb{R}$. $(+)$ $\Delta_f \leq 0.$ (\ddagger) Equality in (†) holds iff $-\frac{b}{2a}$ is a repeated real root of the polynomial $f(x)$. This result will play a key role in the proof of the Cauchy-Schwarz Inequality. Remark.

Proof of Theorem (2).

Let $a, b, c \in \mathbb{R}$. Suppose $a > 0$, $\Delta_f = b^2 - 4ac$, and $f : \mathbb{R} \longrightarrow \mathbb{R}$ is the quadratic polynomial function defined by $f(x) = ax^2 + bx + c$ for any $x \in \mathbb{R}$.

By Theorem (1), f attains absolute minimum value at $-\frac{b}{2a}$, with $f(-\frac{b}{2a}) = -\frac{\Delta_f}{4a}$. \bullet $[(\dagger) \Longrightarrow (\dagger)?]$ Suppose $f(x) \geq 0$ for any $x \in \mathbb{R}$. Then, since $-\frac{b}{2a}$ ER, we have $0 \le f(-\frac{b}{2a}) = -\frac{\Delta}{4a}$. Since a>0, we have -Ya<0. Then $\Delta_{\mathfrak{L}} = -4a \cdot \left(-\frac{\Delta_{\mathfrak{L}}}{4a}\right) \leq 0$. \bullet [(\ddagger) \Longrightarrow (†)?] Suppose $\Delta_{\sharp} \leq 0$. Then, since aso, we have $-\frac{\Delta_{f}}{4\alpha}\geq 0$. Therefore, for any $x \in \mathbb{R}$, we have $f(x) \ge -\frac{\Delta_f}{4a} \ge 0$. $\Delta_f = 0$ iff $f(x) = a\left(x + \frac{b}{2a}\right)^2$ as polynomials.

This happens iff $-\frac{b}{2a}$ is a repeated real root of the polynomial $f(x)$.

4. **Theorem (3). (Cauchy-Schwarz Inequality for 'real vectors'.)** *Let* $x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n \in \mathbb{R}$. *Suppose* x_1, x_2, \dots, x_n are not all zero and y_1, y_2, \dots, y_n are not all zero. *Then the statements below hold:*

(a) The inequality
$$
\left| \sum_{j=1}^{n} x_j y_j \right| \le \left(\sum_{j=1}^{n} x_j^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} y_j^2 \right)^{\frac{1}{2}}
$$
 holds.

(b) The statements (\star_1) , (\star_2) are logically equivalent:

$$
(\star_1)\left|\sum_{j=1}^n x_j y_j\right| = \left(\sum_{j=1}^n x_j^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^n y_j^2\right)^{\frac{1}{2}}.
$$

 (\star_2) *There exist some* $p, q \in \mathbb{R} \setminus \{0\}$ *such that* $px_1 + qy_1 = 0$, $px_2 + qy_2 = 0$, ..., and $px_n + qy_n = 0.$

Remarks.

(1) In the context of the statement of Theorem (3), if

$$
(x_1 = x_2 = \cdots = x_n = 0 \text{ or } y_1 = y_2 = \cdots = y_n = 0),
$$

then the inequality in (a) trivially reduces to the equality in (\star_1) of (b).

(2) We may re-formulate Theorem (3) in the language of *linear algebra*, and cover the trivial cases mentioned above:

Let
$$
x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n \in \mathbb{R}
$$
.
\nSuppose **x**, **y** are vectors in \mathbb{R}^n defined by $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$.
\nThen the stationary set is polynomials below hold.

Then the statements below hold:

 $(\mathbf{a}) \quad |\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \, ||\mathbf{y}||.$

(b) *Equality holds iff* **x***,* **y** *are linearly dependent over* R*.*

5. **Theorem (4). (Triangle Inequality for 'real vectors'.)**

Let $x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n \in \mathbb{R}$. *Suppose* x_1, x_2, \dots, x_n are not all zero and y_1, y_2, \dots, y_n are not all zero. *Then the statements below hold:*

(a) The inequality
$$
\left[\sum_{j=1}^{n} (x_j + y_j)^2\right]^{\frac{1}{2}} \le \left(\sum_{j=1}^{n} x_j^2\right)^{\frac{1}{2}} + \left(\sum_{j=1}^{n} y_j^2\right)^{\frac{1}{2}}
$$
 holds.

(b) *The statements* (*∗*1)*,* (*∗*2) *are logically equivalent:*

$$
(*)\left[\sum_{j=1}^{n} (x_j + y_j)^2\right]^{\frac{1}{2}} = \left(\sum_{j=1}^{n} x_j^2\right)^{\frac{1}{2}} + \left(\sum_{j=1}^{n} y_j^2\right)^{\frac{1}{2}}.
$$

 $(*_2)$ There exist $s > 0, t > 0$ such that $sx_1 = ty_1, sx_2 = ty_2, ..., and sx_n = ty_n$.

Remarks.

(1) In the context of the statement of Theorem (4), if

$$
(x_1 = x_2 = \cdots = x_n = 0 \text{ or } y_1 = y_2 = \cdots = y_n = 0),
$$

then the inequality in (a) trivially reduces to the equality in (\star_1) of (b).

(2) We may re-formulate Theorem (4) in the language of *linear algebra*, and cover the trivial cases described above:

Let
$$
x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n \in \mathbb{R}
$$
.
Suppose **x**, **y** are vectors in \mathbb{R}^n defined by $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$.

Then the statements below hold:

 $(|\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}||.$

(b) *Equality holds iff one of* **x***,* **y** *is a non-negative scalar multiple of the other.*

- 6. Proof of Theorem (3): 'special case " $n = 2$ " 'only.
	- Let $x_1, x_2, y_1, y_2 \in \mathbb{R}$. Suppose x_1, x_2 are not all zero and y_1, y_2 are not all zero. (a) Define the function $F : \mathbb{R} \longrightarrow \mathbb{R}$ by $F(t) = (x_1t + y_1)^2 + (x_2t + y_2)^2$ for any $t \in \mathbb{R}$.
		- "whole square" Whole square" By dephition, for any te R, we have $F(t) \ge 0$. Define $A = x_1^2 + x_1^2$, $B = 2(x_1y_1 + x_2y_2)$, $C = y_1^2 + y_2^2$, and $\Delta = B^2 - 4AC$. For any tell, we have $F(t) = (x_1 t + y_1)^2 + (x_2 t + y_2)^2 = ... = (x_1^2 + x_2^2) t^2 + 2(x_1y_1 + x_2y_2) t + (y_1^2 + y_2^2)$ $= At^2+Bt+C$. Since $x_1 \neq 0$ or $x_2 \neq 0$, we have $A > 0$. Then F is a quadratic polynomial with positive leading coefficients. Recall that F(t) = 0 for any teR. Then, by Theorem (2), $\Delta \leq 0$. Therefore $|x_1y_1 + x_2y_2| = \sqrt{\frac{B^2}{4}} \le \sqrt{AC} = (x_1^2 + x_2^2)^{\frac{1}{2}} (y_1^2 + y_2^2)^{\frac{1}{2}}$.

Proof of Theorem (3): 'special case " $n = 2$ ", 'only.

Let $x_1, x_2, y_1, y_2 \in \mathbb{R}$. Suppose x_1, x_2 are not all zero and y_1, y_2 are not all zero. (a) Define the function $F : \mathbb{R} \longrightarrow \mathbb{R}$ by $F(t) = (x_1t + y_1)^2 + (x_2t + y_2)^2$ for any $t \in \mathbb{R}$. Also recall: $A = x_1^2 + x_2^2$, $B = 2(x_1x_1 + x_2y_2)$ (b) i. $[(\star_1) \Longrightarrow (\star_2)?]$ $C = y_1^2 + y_2^2$, $\Delta = B^2 - YAC$ Suppose $|x_1y_1 + x_2y_2| = (x_1^2 + x_2^2)^{\frac{1}{2}}(y_1^2 + y_2^2)^{\frac{1}{2}}$. Then $\triangle = \angle^2 - \angle AC = 0$ By Theorem (2), the quadratic polynomial $F(t)$ has a repeated real root, namely $-\frac{B}{2A}$. Write $t_0 = -\frac{P}{2\Delta}$ Then, for this to, we have $0 = F(t_0) = (x_1t_0 + y_1)^2 + (x_1t_0 + y_2)^2$ Therefore $x_1t_0+y_1=0$ and $x_2t_0+y_2=0$; (Why?) Take p=to, g=1. We have px, +2y, =0 and px, +2y,=0.
Note that p=0; otherwise we would have y,=0 and y=0. ii. $[(\star_1) \Longrightarrow (\star_2)?]$ Suppose there exist some $p, q \in \mathbb{R} \setminus \{0\}$ such that $px_1 + qy_1 = 0$ and $px_2 + qy_2 = 0$. Define to =- $1/9$. Then we have $x_1t_0+y_1=0$ and $x_2t_0+y_2=0$. Therefore F(t.) = ... = 0. The quadratic polynomial F(t) has a real root, namely t. Since $\frac{y}{x}$ has a real root, $\Delta \geq 0$. But also recall that $\Delta \leq 0$. Then $\Delta \geq 0$. Hence $|x_1y_1 + x_2y_2| = \sqrt{B^2/4} = \sqrt{AC} = (x_1^2 + x_2^2)^{\frac{1}{2}} (y_1^2 + y_2^2)^{\frac{1}{2}}$ \Box

7. Proof of Theorem (4). Exercise.

- 8. There is a pair of results about definite integrals which is known as the Cauchy-Schwarz Inequality and the Triangle Inequality.
	- They can be proved in a similar way as Theorem (3) , Theorem (4) respectively, with the extra help of a result on definite integrals:

Theorem (5) .

Let a, b be real numbers, with $a \leq b$, and $h : [a, b] \longrightarrow \mathbb{R}$ be a function.

Suppose h is continuous on [a, b] and $h(u) \geq 0$ for any $u \in [a, b]$.

Then the inequality $\int_{0}^{b} h(u) du \geq 0$ holds.

Moreover, equality holds iff $(h(u) = 0$ for any $u \in [a, b]$).

Geometric interpretation? Remark.

$$
S_{a}^{b}h(w)dw \text{ is the area of}
$$

the region bounded by
the curve y=h(x) and
the lines y=0, x=a, x=b.
It is 'expected' to be non-negative

when will it happen
that $\int_{a}^{b} h(u) du = 0$? Exactly $y = h(x)$ and

9. **Theorem (6). (Cauchy-Schwarz Inequality for definite integrals.)**

Let a, b *be real numbers, with* $a < b$ *, and* $f, g : [a, b] \longrightarrow \mathbb{R}$ *be functions. Suppose neither* f *nor* g *is constant zero on* $[a, b]$ *.*

Suppose f, g are continuous on [*a, b*]*. Then the statements below hold:*

(a) The inequality
$$
\left| \int_a^b f(u)g(u)du \right| \leq \left[\int_a^b (f(u))^2 du \right]^{\frac{1}{2}} \left[\int_a^b (g(u))^2 du \right]^{\frac{1}{2}}
$$
 holds.

(b) The statements (\star_1) , (\star_2) are logically equivalent:

$$
(\star_1)\left|\int_a^b f(u)g(u)du\right| = \left[\int_a^b (f(u))^2 du\right]^{\frac{1}{2}} \left[\int_a^b (g(u))^2 du\right]^{\frac{1}{2}}.
$$

 (\star_2) There exist some $p, q \in \mathbb{R} \setminus \{0\}$ such that $pf(u) + qg(u) = 0$ for any $u \in [a, b]$. (The *functions f, g are 'linearly dependent over* R*'.)*

Remark. In the context of the statement of Theorem (6), if one of the functions *f*, *g* is constant zero on [a, b], then the inequality in (a) trivially reduces to the equality in (\star_1) of (b).

10. **Theorem (7). (Triangle Inequality for definite integrals.)**

Let a, b *be real numbers, with* $a < b$ *, and* $f, g : [a, b] \longrightarrow \mathbb{R}$ *be functions. Suppose neither* f *nor* g *is constant zero on* $[a, b]$ *.*

Suppose f, g are continuous on [*a, b*]*. Then the statements below hold:*

(a) The inequality
$$
\left[\int_a^b (f(u) + g(u))^2 du\right]^{\frac{1}{2}} \le \left[\int_a^b (f(u))^2 du\right]^{\frac{1}{2}} + \left[\int_a^b (g(u))^2 du\right]^{\frac{1}{2}}
$$
 holds.

(b) *The statements* (*∗*1)*,* (*∗*2) *are logically equivalent:*

$$
(*)\left[\int_a^b (f(u)+g(u))^2 du\right]^{\frac{1}{2}} = \left[\int_a^b (f(u))^2 du\right]^{\frac{1}{2}} + \left[\int_a^b (g(u))^2 du\right]^{\frac{1}{2}}.
$$

 $(*_2)$ There exist some $s > 0$, $t > 0$ such that $sf(u) = tg(u)$. (One of the functions f, g is *a non-negative scalar multiple of the other.)*

Remark. In the context of the statement of Theorem (7), if one of the functions *f*, *g* is constant zero on [a, b], then the inequality in (a) trivially reduces to the equality in $(*_1)$ of (b).

Theorem (7) can be deduced from Theorem (6) in the same way as Theorem (4) is deduced from Theorem (3).

11. Proof of Theorem (6) .

Let a, b be real numbers, with $a < b$, and $f, g : [a, b] \longrightarrow \mathbb{R}$ be functions. Suppose neither f nor g is identically zero on [a, b]. Suppose f, g are continuous on [a, b].

(a) Define the function $F : \mathbb{R} \longrightarrow \mathbb{R}$ by $F(t) = \int_0^b (tf(u) + g(u))^2 du$ for any $t \in \mathbb{R}$. We verify that for any tER, F(t) = 0: · Pick any tell. For any xe [a, b], we have $(tf(x)+g(x))^{2} \geq 0$. Then, by Theorem (5), $\overline{f}(t) = \int_{a}^{b} (tf(u) + g(u))^2 du \ge 0$. Define $A = \int_{a}^{b} (f(u))^{2} du$, $B = 2 \int_{a}^{b} f(u)g(u) du$, $C = \int_{a}^{b} (g(u))^{2} du$, and $\Delta = B - 4AC$. $T^{wy} = \int_{a}^{b} (tf(\omega) + g(\omega))^{2} d\omega = ... = t^{2} \int_{a}^{b} (f(\omega))^{2} d\omega + 2t \int_{a}^{b} f(\omega) g(\omega) d\omega + \int_{a}^{b} (g(\omega))^{2} d\omega$ For any tell, $= A t^2 + B t + C$ Since $(f(x))^2 \ge 0$ for any $x \in [a, b]$, and f is not constant zero on $[a, b]$, we have
 $A = \int_a^b (f(u))^2 du \ge 0$ (by theorem (5) again). Then \overline{f} is a quadratic polynomial function with positive leading coefficient.
Recall that $\overline{f}(t) \ge 0$ for any te R. Then by Theorem (2), $\Delta \le 0$. Therefore $|\int_{\alpha}^{b} f(u)g(u)du| = \sqrt{\frac{B^{2}}{4}} \leq \sqrt{\frac{AC}{2}} = (\int_{\alpha}^{b} (f(u))^{2} du)^{1/2} (\int_{\alpha}^{b} (g(u))^{2} du)^{1/2}$

Proof of Theorem (6).

Let a, b be real numbers, with $a < b$, and $f, g : [a, b] \longrightarrow \mathbb{R}$ be functions. Suppose neither f nor g is identically zero on [a, b]. Suppose f, g are continuous on [a, b].

(a) Define the function $F : \mathbb{R} \longrightarrow \mathbb{R}$ by $F(t) = \int_{0}^{b} (tf(u) + g(u))^2 du$ for any $t \in \mathbb{R}$. Also recall: $\begin{array}{llll} \displaystyle [(\star_1) \Longrightarrow (\star_2)?]\\ \displaystyle \text{Suppose} \,\left|\int_a^b f(u)g(u)du\right| = \left(\int_a^b (f(u))^2 du\right)^{\frac{1}{2}} \left(\int_a^b (g(u))^2 du\right)^{\frac{1}{2}}. \begin{array}{llll} & \displaystyle \frac{1}{\lambda} \circ \int_a^b (\xi \omega)^2 du, \\ & \displaystyle \frac{1}{\lambda} \circ \frac{1}{\lambda} \circ \int_a^b \xi \omega \sin^2 du, \\ & \displaystyle \frac{1}{\lambda} \circ \frac{1}{\lambda} \circ \frac{1}{\lambda} \circ \int_a^b \xi \omega \$ (b) i. $[(\star_1) \Longrightarrow (\star_2)^?]$ Then $A = B^2 - 4AC = 0$. B_y Theorem (2), the quadratic polynomial F(t) has a repeated root, namely $-\frac{B}{2A}$ Write $t = -\frac{B}{2R}$ Then for this to we have $0 = \overline{f}(t_0) = \int_{a}^{b} (t_0 f(\omega + g(\omega)))^{2} d\omega$. Therefore, by Theorem (S), we have $t_o f(x) + g(x) = 0$ for any $x \in [a, b]$ Take p=to, q=1 We have p f(x) + q g(x) = 0 for any x e [a, b].
Note that p + 0; Theraise g would be constant zero on [a, b].

Proof of Theorem (6).

Let a, b be real numbers, with $a < b$, and $f, g : [a, b] \longrightarrow \mathbb{R}$ be functions. Suppose neither f nor g is identically zero on [a, b]. Suppose f, g are continuous on [a, b].

(a) Define the function
$$
F : \mathbb{R} \to \mathbb{R}
$$
 by $F(t) = \int_{a}^{b} (tf(u) + g(u))^2 du$ for any $t \in \mathbb{R}$.
\n(b) i. $[(\star_1) \implies (\star_2)^2]$...
\nii. $[(\star_2) \implies (\star_1)^2]$
\nSuppose there exist some $p, q \in \mathbb{R}\setminus\{0\}$ such that for any $x \in [a, b]$, the equality
\n $pf(x) + qg(x) = 0$ holds.
\n $Def\wedge e$ $t_0 = \frac{p}{b}$.
\n $Def\wedge e$ $t_0 = \frac{p}{b}$.
\n $Def\wedge e$ $t_0 = \frac{p}{b}$.
\n $Def\wedge e$ $f(t_0) = \int_{a}^{b} (t_0 + g(u))^2 du = 0$.
\n $Def\wedge e$ $f(t_0) = \int_{a}^{b} (t_0 + f(u) + g(u))^2 du = 0$.
\n Mod $flat$ g $real$ $to \infty$.
\n Mod $det\wedge adx$ $proj\wedge adx$ f co $head$ co .
\n Mod $det\wedge adx$ reg $cong$ Mod con $real$ $to \infty$.
\n Mod Mod $cong$ Mod con Mod con mod tot , namely t_0 .
\n Mod Mod $cong$ Mod $cong$ Mod $cong$ Mod $cong$ Mod $cong$ mod $cong$ mod mod $cong$ mod <

12. **Appendix 1. Cauchy-Schwarz Inequality and Triangle Inequality for 'squaresummable infinite sequences of real numbers'.**

With the help of the Bounded-Monotone Theorem and the notion of absolute convergence for infinite series, we can 'extend' the Cauchy-Schwarz Inequality and Triangle Inequality to analogous results for 'square-summable infinite sequences in R'.

13. **Appendix 2: Further generalizations.**

- (a) There are 'complex analogues' for the 'real versions' of Cauchy-Schwarz Inequalities (Theorem (3), Theorem (6)) and Triangle Inequalities (Theorem (4), Theorem (7)) stated here.
- (b) The Cauchy-Schwarz Inequality for 'real vectors' can be seen as a special case of Hölder's Inequality for 'real vectors'. The Triangle Inequality for 'real vectors' can be seen as a special case of Minkowski's Inequality for 'real vectors'. You will encounter these inequalities in advanced courses in *mathematical analysis*.