
MATH1050 Monotonicity and boundedness for infinite sequences of real numbers

1. Definition.
Let {an}∞n=0 be an infinite sequence in R.

(a) Let κ ∈ R. κ is said to be
{ upper bound

lower bound
}

of {an}∞n=0 in R if, for any n ∈ N,
{

an ≤ κ
an ≥ κ

}
.

(b) {an}∞n=0 is said to be
{ bounded above

bounded below
}

in R if there exists some κ ∈ R such that for any n ∈ N,
{

an ≤ κ
an ≥ κ

}
.

Bounded-ness for infinite sequences of real numbers can be re-formulated in terms of bounded-ness for their corre-
sponding ‘sets of all terms’.
Lemma (1).
Let {an}∞n=0 be an infinite sequence in R. Define T ({an}∞n=0) = {x ∈ R : x = an for some n ∈ N}.
(T ({an}∞n=0) is the set of all terms of {an}∞n=0.)
The statements below hold:

(a) {an}∞n=0 is bounded above in R by β iff T ({an}∞n=0) is bounded above in R by β.
(b) {an}∞n=0 is bounded below in R by β iff T ({an}∞n=0) is bounded below in R by β.

Proof of (a). Exercise. (Word game.)

2. Definition.
Let {an}∞n=0 be an infinite sequence in R.

(a) {an}∞n=0 is said to be
{ increasing

decreasing
}

if, for any n ∈ N,
{

an ≤ an+1
an ≥ an+1

}
.

(b) {an}∞n=0 is said to be
{ strictly increasing

strictly decreasing
}

if, for any n ∈ N,
{

an < an+1
an > an+1

}
.

Remarks on terminology.

(a) {an}∞n=0 is said to be monotonic if {an}∞n=0 is increasing or decreasing.
(b) {an}∞n=0 is said to be strictly monotonic if {an}∞n=0 is strictly increasing or strictly decreasing.

Lemma (2).
Let {an}∞n=0 be an infinite sequence in R. Define T ({an}∞n=0) = {x ∈ R : x = an for some n ∈ N}. (T ({an}∞n=0) is
the set of all terms of {an}∞n=0.) The statements below hold:

(a) Suppose {an}∞n=0 is strictly increasing. Then T ({an}∞n=0) has no greatest element.
(b) Suppose {an}∞n=0 is strictly decreasing. Then T ({an}∞n=0) has no least element.

Proof. [We give an argument for (a) only; that for (b) is similar.]
Let {an}∞n=0 be an infinite sequence in R. Define T ({an}∞n=0) = {x ∈ R : x = an for some n ∈ N}.
Suppose {an}∞n=0 is strictly increasing.
Suppose it were true that T ({an}∞n=0) had a greatest element, say, λ.
By definition, λ ∈ T ({an}∞n=0).
[Ask: Is there any element of T ({an}∞n=0) greater than λ. How to conceive it, if there is any?]
By definition, there existed some n0 ∈ N such that λ = an0 .
Note that n0 + 1 ∈ N.
Define x = an0+1. By definition, x ∈ T ({an}∞n=0).
Since {an}∞n=0 is strictly increasing, we would have x = an0+1 > an0 = λ.
But λ was a greatest element of T ({an}∞n=0). Contradition arises.
It follows that in the first place, T ({an}∞n=0) has no greatest element.
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3. Example (1).

For any n ∈ N, define an =
(n+ 1)(n+ 4)

(n+ 2)(n+ 3)
. Define T = {x | x = an for some n ∈ N}.

(a) {an}∞n=0 is bounded above in R by 1. (Equivalently, T is bounded above in R by 1. )
Proof.

Let n ∈ N. We have an =
(n+ 1)(n+ 4)

(n+ 2)(n+ 3)
=

n2 + 5n+ 4

n2 + 5n+ 6
= 1− 2

n2 + 5n+ 6
≤ 1− 0 = 1.

Hence {an}∞n=0 is bounded above by 1.
(b) {an}∞n=0 is strictly increasing.

Proof.
Let n ∈ N.

an+1 − an =
[(n+ 1) + 1][(n+ 1) + 4]

[(n+ 1) + 2][(n+ 1) + 3]
− (n+ 1)(n+ 4)

(n+ 2)(n+ 3)
=

(n+ 2)(n+ 5)

(n+ 3)(n+ 4)
− (n+ 1)(n+ 4)

(n+ 2)(n+ 3)

=
(n+ 2)2(n+ 5)− (n+ 1)(n+ 4)2

(n+ 2)(n+ 3)(n+ 4)
=

4

(n+ 2)(n+ 3)(n+ 4)
> 0

Then an+1 > an.
(c) T has no greatest element.

Proof.
Suppose T had a greatest element, say, λ. Then there would exist some n ∈ N such that λ = an.
Take x0 = an+1. By definition, x0 ∈ T .
We have x0 = an+1 > an = λ. Therefore λ would not be a greatest element of T . Contradiction arises.
It follows that T has no greatest element in the first place.

(d) For any β ∈ R, if β ≥ 1 then β is an upper bound of T in R. (Exercise.)
(e) For any β ∈ R, if β < 1 then β is not an upper bound of T in R.

Remark. We assume the validity of the statement (AP) below (which is known as the Archimedean Principle):
(AP) For any ε > 0, there exists some N ∈ N\{0} such that Nε > 1.

Proof.
Pick any β ∈ R. Suppose β < 1.
[We apply the proof-by-contradiction method to prove that β is not an upper bound of T in R.]

• Suppose β were an upper bound of T in R.
[Ask: Is there any element of T greater than β?
We may reformulate the question in this way: can we name an appropriate natural number k for which
ak > β holds?
This suggests we study the inequality ‘am > β’. We try to re-formulate it into the form ‘P (m)Q(β) > 1’,
in which P (m) is an expression for some integer depending on m but not β, and Q(β) is an expression
for some positive real number depending on β but not m.
This provides a hint on how we may apply Statement (AP) to name an appropriate m for which am > β

holds.]

Define ε =
1− β

2
. By definition, ε > 0.

By (AP), since ε > 0, there exists some N ∈ N\{0} such that Nε > 1.
For the same ε,N , we have (N2 + 5N + 6)ε ≥ Nε > 1.

Then 2

N2 + 5N + 6
< 2ε = 1− β. Therefore β < 1− 2

N2 + 5N + 6
= aN .

But β was an upper bound of T in R. Contradiction arises.
(f) T has a supremum in R, namely 1.

Proof.
The set of all upper bounds of T in R is the interval [1,+∞), whose least element is 1.

4. Example (2).

For any n ∈ N, define an =

n∑
k=0

9

10k+1
. Define T = {x | x = an for some n ∈ N}.
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(a) {an}∞n=0 is bounded above in R by 1. (Equivalently, T is bounded above in R by 1. )
Proof.

Let n ∈ N. We have an =

n∑
k=0

9

10k+1
=

9

10
· 1− 1/10n+1

1− 1/10
= 1− 1

10n+1
≤ 1− 0 = 1.

Hence {an}∞n=0 is bounded above by 1.
(b) {an}∞n=0 is strictly increasing.

Proof.

Let n ∈ N. We have an+1 − an =

n+1∑
k=0

9

10k+1
−

n∑
k=0

9

10k+1
=

9

10n+2
> 0. Then an+1 > an.

(c) T has no greatest element. (Exercise.)
(d) For any β ∈ R, if β ≥ 1 then β is an upper bound of T in R. (Exercise.)
(e) For any β ∈ R, if β < 1 then β is not an upper bound of T in R.

Remark. We assume the validity of the statement (AP) below (which is known as the Archimedean Principle):
(AP) For any ε > 0, there exists some N ∈ N\{0} such that Nε > 1.

Proof.
Pick any β ∈ R. Suppose β < 1.
[We apply the proof-by-contradiction method to prove that β is not an upper bound of T in R.]

• Suppose β were an upper bound of T in R.
[Ask: Is there any element of T greater than β?
We may reformulate the question in this way: can we name an appropriate natural number k for which
ak > β holds?
This suggests we study the inequality ‘am > β’. We try to re-formulate it into the form ‘P (m)Q(β) > 1’,
in which P (m) is an expression for some integer depending on m but not β, and Q(β) is an expression
for some positive real number depending on β but not m.
This provides a hint on how we may apply Statement (AP) to name an appropriate m for which am > β

holds.]
Define ε = 1− β. By definition, ε > 0.
By (AP), since ε > 0, there exists some N ∈ N\{0} such that Nε > 1.
For the same ε,N , we have 10N+1ε ≥ Nε > 1.

Then 1

10N+1
< ε = 1− β. Therefore β < 1− 1

10N+1
=

N∑
k=0

9

10k+1
= aN .

But β was an upper bound of T in R. Contradiction arises.
(f) T has a supremum in R, namely 1. (Exercise.)

5. Example (3).
Let p be a positive prime number. Define α =

√
p. Let b ∈ (α,+∞).

Let {an}∞n=0 be the infinite sequence defined recursively by{
a0 = b

an+1 =
1

2
(an +

α2

an
) for any n ∈ N

Define T = {x ∈ R : x = an for some n ∈ N}.
The infinite sequence {an}∞n=0 will provide approximations a0, a1, a2, a3, · · · as close to the irrational number α =

√
p

as we like, as the index in the aj ’s increases.
It is done as described below algorithmically:

• Consider the curve C : y = x2 − p on the coordinate plane. (C intersects the x-axis at the point (
√
p, 0).)

Take M0 = (a0, 0) = (b, 0).
For each j ∈ N, draw the line ℓj (whose equation is x = aj) through Mj perpendicular to the x-axis. The
intersection of ℓj with C is defined to be Kj : its coordinates are given by Kj = (aj , aj

2 − p).
Draw the tangent tj to the curve C at Kj . (The equation of tj is y = 2ajx− (aj

2 + p).) The intersection of tj
with the x-axis is defined to be Mj+1 = (aj+1, 0).
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x

y

0

α aj

Kjaj
2 − p

y = x2 − p

x

y

0

α aj

Kjaj
2 − p

aj+1

y = x2 − p y = 2ajx − (aj
2 + p)

Here are the properties of the infinite sequence {an}∞n=0 and the set T :

(a) For any n ∈ N, an > α.
Remark. As a consequence, {an}∞n=0 is bounded below in R by α, and T is bounded below in R by α.
Proof.
Note that a0 = b > α > 0.

Suppose it were true that there existed some n ∈ N so that an ≤ α.
Then there would be a smallest N ∈ N so that aN > α and aN+1 ≤ α. (Why? Apply the Well-ordering
Principle for Integers.)

We would have α ≥ aN+1 =
1

2

(
aN +

α2

aN

)
=

aN
2 + α2

2aN
.

Since aN > 0, we would have 2αaN ≥ aN
2 + α2. Then (aN − α)2 = aN

2 − 2αaN + α2 ≤ 0. Therefore
aN = α. But aN > α.
Contradiction arises.

Hence, in the first place, we have an > α for any n ∈ N.
(b) {an}∞n=0 is strictly decreasing.

Proof.
Let n ∈ N. an > α > 0. Then an

2 − α2 > 0 also.

Therefore an+1 − an =
1

2

(
an +

α2

an

)
− an =

1

2

(
−an +

α2

an

)
= −an

2 − α2

2an
< 0.

Hence an+1 > an.

(c) 0 < an − α <
b− α

2n
for any n ∈ N\{0}.

Remark. Heuristically speaking, the infinite sequence {an}∞n=0 will descend to as close as α as we like, but it
will never ‘reach’ α.
Proof.
Let n ∈ N. For each k = 0, 1, 2, · · · , n, since ak > α, we have ak − α > 0. We have

an − α =
1

2

(
an−1 +

α2

an−1

)
− α =

1

2
(an−1 − α) +

1

2

(
α2

an−1
− α

)
=

1

2
(an−1 − α)− α

2
· an−1 − α

an−1
<

1

2
(an−1 − α) <

1

22
(an−2 − α) < · · · < 1

2n
(a0 − α) =

1

2n
(b− α)

(d) T has no least element.
Proof.
Suppose T had a least element, say, λ.
Then there would exist some n0 ∈ N such that λ = an0

.
Now take x0 = an0+1. We would have x0 ∈ T and x0 = an0+1 < an0 = λ.
Contradiction arises. Hence T has no least element in the first place.

(e) For any β ∈ R, if β < α then β is a lower bound of T in R. (Exercise.)
(f) For any β ∈ R, if β > α then β is not a lower bound of T in R.

Remark. We assume the validity of the statement (AP) below (which is known as the Archimedean Principle):
(AP) For any ε > 0, there exists some N ∈ N\{0} such that Nε > 1.
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Proof.
Pick any β ∈ R. Suppose β > α.
[We apply the proof-by-contradiction method to prove that β is not a lower bound of T in R.]

• Suppose β were a lower bound of T in R.
[Ask: Is there any element of T less than β?
We may reformulate the question in this way: can we name an appropriate natural number k for which
ak < β holds?
This seems to be difficult to answer. So we further reformulate the question: can we name an appropriate
natural number k for which ak − α < β − α holds?

This further reformulation is helpful because we know for sure that 0 < am−α <
b− α

2m
for each m ∈ N.

This suggests we ask for something ‘more demanding’: can we name an appropriate natural number k

for which ak − α <
b− α

2k
< β − α holds?

This provides a hint on how we may apply Statement (AP) to answer the original question.]

Define ε =
β − α

b− α
. By definition, ε > 0.

By (AP), since ε > 0, there exists some N ∈ N\{0} such that Nε > 1.
For the same ε,N , we have 2Nε ≥ Nε > 1.

Then 2N · β − α

b− α
> 1. Therefore a2N − α <

b− α

2N
< β − α. Hence a2N < β.

But β was a lower bound of T in R. Contradiction arises.
(g) T has an infimum in R, namely, α.

Proof.
The set of all lower bounds of T in R is the interval (−∞, α], whose least element is α.

Further remarks.

(1) The idea and the calculation will still work even when we do not require p to be a positive prime number; we may
allow p to be any positive real number that we like. The infinite sequence {an}∞n=0 will provide approximations
which descends to α =

√
p as close as we like, but never reaches α.

(2) How about finding cubic roots of positive real numbers?
Suppose p is a positive real number and α = 3

√
p. Suppose b ∈ (α,+∞). Define infinite sequence {an}∞n=0

recursively by {
a0 = b

an+1 =
1

3
(2an +

α3

an2
) for any n ∈ N

This infinite sequence {an}∞n=0 will provide approximations which descends to α = 3
√
p as close as we like, but

never reaches α.
(First draw the picture and formulate the algorithm which are analogous to the ones for the original example
on square roots. This will give you a feeling on what this infinite sequence is ‘doing’. Then try to formulate and
prove some statements which are analogous to the ones that we have proved for the original example.)

(3) Can you generalize the idea to finding quartic roots of positive real numbers? Quintic roots? n-th roots?
(4) The idea and method described here is a ‘concrete’ example of the application of Newton’s Method (for

finding approximate solutions of equations).

6. Some ‘coincidence’ in Examples (1), (2), (3).
We make some observations on Examples (1), (2), (3).
Example (1).

• The infinite sequence
{
(n+ 1)(n+ 4)

(n+ 2)(n+ 3)

}∞

n=0

is increasing and bounded above in R.

The supremum of its set of all terms is 1. Coincidentally, the limit of this infinite sequence is also 1.

Example (2).

• The infinite sequence
{

n∑
k=0

9

10k+1

}∞

n=0

is increasing and bounded above in R.

The supremum of its set of all terms is 1. Coincidentally, the limit of this infinite sequence is also 1.

Example (3).
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• Let p be a positive prime number and b ∈ (
√
p,+∞). The infinite sequence {an}∞n=0 defined recursively by{

a0 = b

an+1 =
1

2
(an +

α2

an
) for any n ∈ N

is decreasing and bounded below in R.
The infimum of its set of all terms is √

p. Coincidentally, the limit of this infinite sequence is also √
p.

The ‘coincidence’ in these examples is no isolated phenomenon. It is a consequence of the Bounded-Monotone
Theorem for infinite sequences of real numbers.

7. Bounded-Monotone Theorem for infinite sequences of real numbers.
Let {an}∞n=0 be an infinite sequence of real numbers. Denote the set of all terms of {an}∞n=0 by T .

Suppose {an}∞n=0 is
{ increasing

decreasing
}

.

Further suppose {an}∞n=0 is
{ bounded above

bounded below
}

in R. Denote the
{ supremum

infimum
}

of T in R by σ, if it exists.

Then
{

sup(T )
inf(T )

}
exists in R, {an}∞n=0 converges in R, and lim

n→∞
an = σ.

(Furthermore, for any
{ upper bound

lower bound
}

β of the infinite sequence {an}∞n=0, the inequality
{

σ ≤ β
σ ≥ β

}
holds. Also,

for any k ∈ N, the inequality
{

ak ≤ σ
ak ≥ σ

}
holds.)

Remark. The Bounded-Monotone Theorem is a consequence of the Least-upper-bound Axiom:
Let A be a non-empty subset of R. Suppose A is bounded above in R. Then A has a least upper bound in R.

8. Appendix: Definition for limit of sequence, and a proof for the Bounded-Monotone Theorem.
To give a satisfactory argument for the Bounded-Monotone Theorem, we first need to formulate a satisfactory definition
for the notion of limit of sequence.
Definition.
Let {an}∞n=0 be an infinite sequence of real numbers, and ℓ be a real number.
We say that {an}∞n=0 converges to ℓ, and write lim

n→∞
an = ℓ if the condition (⋆) is satisfied:

(⋆) For any ε > 0, there exists some N ∈ N such that for any k ∈ N, if k > N then |ak − ℓ| < ε.

Proof of the Bounded-Monotone Theorem.
Let {an}∞n=0 be an infinite sequence of real numbers. Suppose {an}∞n=0 is increasing, and is bounded above in R.
Define T = {x ∈ R : x = an for some n ∈ N}.
Note that a0 ∈ T . Then T ̸= ∅.
By assumption T is bounded above in R. Then by the Least-upper-bound Axiom, T has a supremum in R. Write
σ = sup(T ).

We verify that {an}∞n=0 converges to σ:

• Pick any ε > 0.
[Can we name an appropriate natural number N for which it happens that whenever k > N , |ak − σ| < ε?
How?]

Note that σ − ε < σ.
Then by definition, σ − ε is not an upper bound of T in R.
Therefore there exists some x ∈ T such that x > σ − ε.
For the same x, there exists some N ∈ N such that x = aN .

[Ask: Is it true that whenever k > N , |ak − σ| < ε?]
Pick any k ∈ N. Suppose k > N .
Then we have ak > aN = x > σ − ε by assumption.
Therefore |ak − σ| = σ − ak < ε.

The result follows.
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