1. **Definition.**

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence in \mathbb{R} .

(a) Let $\kappa \in \mathbb{R}$. κ is said to be $\left\{\begin{array}{c} \textbf{upper bound} \\ \textbf{lower bound} \end{array}\right\}$ of $\{a_n\}_{n=0}^{\infty}$ in \mathbb{R} if, for any $n \in \mathbb{N}$, $\left\{\begin{array}{c} a_n \leq \kappa \\ a_n \geq \kappa \end{array}\right\}$ $a_n \geq \kappa$ } *.* (b) ${a_n}_{n=0}^{\infty}$ is said to be $\left\{\begin{array}{l}\text{bounded above} \\ \text{bounded below}\end{array}\right\}$ in $\mathbb R$ if there exists some $\kappa \in \mathbb R$ such that for any $n \in \mathbb N$, $\left\{\begin{array}{l}\na_n \leq \kappa \\
a_n \geq \kappa\n\end{array}\right\}$ $a_n \geq \kappa$ } *.*

Bounded-ness for infinite sequences of real numbers can be re-formulated in terms of bounded-ness for their corresponding 'sets of all terms'.

Lemma (1).

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence in \mathbb{R} . Define $T(\{a_n\}_{n=0}^{\infty}) = \{x \in \mathbb{R} : x = a_n \text{ for some } n \in \mathbb{N}\}.$

 $(T(\{a_n\}_{n=0}^{\infty})$ *is the set of all terms of* $\{a_n\}_{n=0}^{\infty}$.)

The statements below hold:

- (a) $\{a_n\}_{n=0}^{\infty}$ is bounded above in $\mathbb R$ by β iff $T(\{a_n\}_{n=0}^{\infty})$ is bounded above in $\mathbb R$ by β .
- (b) ${a_n}_{n=0}^{\infty}$ is bounded below in $\mathbb R$ by β iff $T({a_n}_{n=0}^{\infty})$ is bounded below in $\mathbb R$ by β .

Proof of (a). Exercise. (Word game.)

2. **Definition.**

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence in \mathbb{R} .

(a) $\{a_n\}_{n=0}^{\infty}$ is said to be $\left\{\begin{array}{c} \textbf{increasing} \\ \textbf{decreasing} \end{array}\right\}$ if, for any $n \in \mathbb{N}$, $\left\{\begin{array}{c} a_n \leq a_{n+1} \\ a_n \geq a_{n+1} \end{array}\right\}$. (b) $\{a_n\}_{n=0}^{\infty}$ is said to be $\left\{\begin{array}{c}\text{strictly increasing} \\ \text{strictly decreasing}\end{array}\right\}$ if, for any $n \in \mathbb{N}$, $\left\{\begin{array}{c}\text{a}_n < a_{n+1} \\ a_n > a_{n+1}\end{array}\right\}$.

Remarks on terminology.

- (a) ${a_n}_{n=0}^{\infty}$ is said to be **monotonic** if ${a_n}_{n=0}^{\infty}$ is increasing or decreasing.
- (b) ${a_n}_{n=0}^{\infty}$ is said to be **strictly monotonic** if ${a_n}_{n=0}^{\infty}$ is strictly increasing or strictly decreasing.

Lemma (2).

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence in $\mathbb R$. Define $T(\{a_n\}_{n=0}^{\infty}) = \{x \in \mathbb R : x = a_n \text{ for some } n \in \mathbb N\}$. $(T(\{a_n\}_{n=0}^{\infty})$ is *the set of all terms of* $\{a_n\}_{n=0}^{\infty}$.) The statements below hold:

- (a) *Suppose* $\{a_n\}_{n=0}^{\infty}$ *is strictly increasing. Then* $T(\{a_n\}_{n=0}^{\infty})$ *has no greatest element.*
- (b) *Suppose* $\{a_n\}_{n=0}^{\infty}$ *is strictly decreasing. Then* $T(\{a_n\}_{n=0}^{\infty})$ *has no least element.*

Proof. [We give an argument for (a) only; that for (b) is similar.]

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence in \mathbb{R} . Define $T(\{a_n\}_{n=0}^{\infty}) = \{x \in \mathbb{R} : x = a_n \text{ for some } n \in \mathbb{N}\}.$

Suppose $\{a_n\}_{n=0}^{\infty}$ is strictly increasing.

Suppose it were true that $T(\{a_n\}_{n=0}^{\infty})$ had a greatest element, say, λ .

By definition, $\lambda \in T(\lbrace a_n \rbrace_{n=0}^{\infty})$.

[Ask: Is there any element of $T(\{a_n\}_{n=0}^{\infty})$ greater than λ . How to conceive it, if there is any?]

By definition, there existed some $n_0 \in \mathbb{N}$ such that $\lambda = a_{n_0}$.

Note that $n_0 + 1 \in \mathbb{N}$.

Define $x = a_{n_0+1}$. By definition, $x \in T(\lbrace a_n \rbrace_{n=0}^{\infty})$.

Since ${a_n}_{n=0}^{\infty}$ is strictly increasing, we would have $x = a_{n_0+1} > a_{n_0} = \lambda$.

But λ was a greatest element of $T(\lbrace a_n \rbrace_{n=0}^{\infty})$. Contradition arises.

It follows that in the first place, $T(\{a_n\}_{n=0}^{\infty})$ has no greatest element.

3. **Example (1).**

For any $n \in \mathbb{N}$, define $a_n = \frac{(n+1)(n+4)}{(n+2)(n+3)}$. Define $T = \{x \mid x = a_n \text{ for some } n \in \mathbb{N}\}.$

(a) ${a_n}_{n=0}^{\infty}$ *is bounded above in* R *by* 1*.* (Equivalently, *T is bounded above in* R *by* 1*.*) **Proof.**

Let $n \in \mathbb{N}$. We have $a_n = \frac{(n+1)(n+4)}{(n+2)(n+3)} = \frac{n^2+5n+4}{n^2+5n+6}$ $\frac{n^2+5n+4}{n^2+5n+6} = 1 - \frac{2}{n^2+5}$ $\frac{2}{n^2+5n+6} \leq 1-0=1.$ Hence $\{a_n\}_{n=0}^{\infty}$ is bounded above by 1.

-
- (b) $\{a_n\}_{n=0}^{\infty}$ *is strictly increasing.*

Proof.

Let $n \in \mathbb{N}$.

$$
a_{n+1} - a_n = \frac{[(n+1)+1][(n+1)+4]}{[(n+1)+2][(n+1)+3]} - \frac{(n+1)(n+4)}{(n+2)(n+3)} = \frac{(n+2)(n+5)}{(n+3)(n+4)} - \frac{(n+1)(n+4)}{(n+2)(n+3)}
$$

$$
= \frac{(n+2)^2(n+5) - (n+1)(n+4)^2}{(n+2)(n+3)(n+4)} = \frac{4}{(n+2)(n+3)(n+4)} > 0
$$

Then $a_{n+1} > a_n$.

(c) *T has no greatest element.*

Proof.

Suppose *T* had a greatest element, say, λ . Then there would exist some $n \in \mathbb{N}$ such that $\lambda = a_n$. Take $x_0 = a_{n+1}$. By definition, $x_0 \in T$.

We have $x_0 = a_{n+1} > a_n = \lambda$. Therefore λ would not be a greatest element of *T*. Contradiction arises. It follows that *T* has no greatest element in the first place.

- (d) *For any* $\beta \in \mathbb{R}$, if $\beta \ge 1$ *then* β *is an upper bound of T in* \mathbb{R} *.* (Exercise.)
- (e) *For any* $\beta \in \mathbb{R}$, if $\beta < 1$ then β *is not an upper bound of T in* \mathbb{R} *.*

Remark. We assume the validity of the statement (AP) below (which is known as the Archimedean Principle):

(AP) *For any* $\varepsilon > 0$ *, there exists some* $N \in \mathbb{N} \setminus \{0\}$ *such that* $N\varepsilon > 1$ *.*

Proof.

Pick any $\beta \in \mathbb{R}$. Suppose $\beta < 1$.

[We apply the proof-by-contradiction method to prove that *β* is not an upper bound of *T* in R.]

• Suppose *β* were an upper bound of *T* in R.

[Ask: Is there any element of *T* greater than *β*?

We may reformulate the question in this way: can we name an appropriate natural number k for which $a_k > \beta$ holds?

This suggests we study the inequality ' $a_m > \beta$ '. We try to re-formulate it into the form ' $P(m)Q(\beta) > 1$ ', in which $P(m)$ is an expression for some integer depending on *m* but not β , and $Q(\beta)$ is an expression for some positive real number depending on *β* but not *m*.

This provides a hint on how we may apply Statement (AP) to name an appropriate *m* for which $a_m > \beta$ holds.]

Define $\varepsilon = \frac{1-\beta}{2}$ $\frac{\beta}{2}$. By definition, $\varepsilon > 0$. By (AP), since $\varepsilon > 0$, there exists some $N \in \mathbb{N} \backslash \{0\}$ such that $N\varepsilon > 1$. For the same ε , *N*, we have $(N^2 + 5N + 6)\varepsilon > N\varepsilon > 1$. Then $\frac{2}{N^2 + 5N + 6} < 2\varepsilon = 1 - \beta$. Therefore $\beta < 1 - \frac{2}{N^2 + 5}$ $\frac{2}{N^2+5N+6} = a_N.$ But *β* was an upper bound of *T* in R. Contradiction arises.

(f) *T has a supremum in* R*, namely* 1*.*

Proof.

The set of all upper bounds of *T* in \mathbb{R} is the interval $[1, +\infty)$, whose least element is 1.

4. **Example (2).**

$$
\text{For any } n \in \mathbb{N}, \text{ define } a_n = \sum_{k=0}^n \frac{9}{10^{k+1}}. \text{ Define } T = \{x \mid x = a_n \text{ for some } n \in \mathbb{N}\}.
$$

(a) ${a_n}_{n=0}^{\infty}$ *is bounded above in* R *by* 1*.* (*Equivalently, T is bounded above in* R *by* 1*.*) **Proof.**

Let
$$
n \in \mathbb{N}
$$
. We have $a_n = \sum_{k=0}^n \frac{9}{10^{k+1}} = \frac{9}{10} \cdot \frac{1 - 1/10^{n+1}}{1 - 1/10} = 1 - \frac{1}{10^{n+1}} \le 1 - 0 = 1$.

Hence $\{a_n\}_{n=0}^{\infty}$ is bounded above by 1.

(b) $\{a_n\}_{n=0}^{\infty}$ *is strictly increasing.* **Proof.**

Let
$$
n \in \mathbb{N}
$$
. We have $a_{n+1} - a_n = \sum_{k=0}^{n+1} \frac{9}{10^{k+1}} - \sum_{k=0}^{n} \frac{9}{10^{k+1}} = \frac{9}{10^{n+2}} > 0$. Then $a_{n+1} > a_n$.

- (c) *T has no greatest element.* (Exercise.)
- (d) *For any* $\beta \in \mathbb{R}$, if $\beta > 1$ *then* β *is an upper bound of T in* \mathbb{R} *.* (Exercise.)
- (e) *For any* $\beta \in \mathbb{R}$, if $\beta < 1$ then β *is not an upper bound of T in* \mathbb{R} *.*

Remark. We assume the validity of the statement (AP) below (which is known as the Archimedean Principle):

(AP) *For any* $\varepsilon > 0$ *, there exists some* $N \in \mathbb{N} \setminus \{0\}$ *such that* $N\varepsilon > 1$ *.*

Proof.

Pick any $\beta \in \mathbb{R}$. Suppose $\beta < 1$.

[We apply the proof-by-contradiction method to prove that *β* is not an upper bound of *T* in R.]

• Suppose *β* were an upper bound of *T* in R.

[Ask: Is there any element of *T* greater than *β*?

We may reformulate the question in this way: can we name an appropriate natural number *k* for which $a_k > \beta$ holds?

This suggests we study the inequality ' $a_m > \beta$ '. We try to re-formulate it into the form ' $P(m)Q(\beta) > 1$ ', in which $P(m)$ is an expression for some integer depending on *m* but not β , and $Q(\beta)$ is an expression for some positive real number depending on β but not m .

This provides a hint on how we may apply Statement (AP) to name an appropriate *m* for which $a_m > \beta$ holds.]

Define $ε = 1 − β$. By definition, $ε > 0$.

By (AP), since $\varepsilon > 0$, there exists some $N \in \mathbb{N} \backslash \{0\}$ such that $N\varepsilon > 1$. For the same ε , *N*, we have $10^{N+1} \varepsilon \ge N \varepsilon > 1$.

Then
$$
\frac{1}{10^{N+1}} < \varepsilon = 1 - \beta
$$
. Therefore $\beta < 1 - \frac{1}{10^{N+1}} = \sum_{k=0}^{N} \frac{9}{10^{k+1}} = a_N$.

But β was an upper bound of *T* in **R**. Contradiction arises.

(f) *T has a supremum in* R*, namely* 1*.* (Exercise.)

5. **Example (3).**

Let p be a positive prime number. Define $\alpha = \sqrt{p}$ *. Let* $b \in (\alpha, +\infty)$ *.*

Let ${a_n}_{n=0}^{\infty}$ be the infinite sequence defined recursively by

$$
\begin{cases}\n a_0 = b \\
 a_{n+1} = \frac{1}{2}(a_n + \frac{\alpha^2}{a_n}) \quad \text{for any} \quad n \in \mathbb{N}\n\end{cases}
$$

Define $T = \{x \in \mathbb{R} : x = a_n \text{ for some } n \in \mathbb{N}\}.$

The infinite sequence $\{a_n\}_{n=0}^{\infty}$ will provide approximations $a_0, a_1, a_2, a_3, \cdots$ as close to the irrational number $\alpha = \sqrt{p}$ as we like, as the index in the a_j 's increases.

It is done as described below algorithmically:

• Consider the curve $C: y = x^2 - p$ on the coordinate plane. (*C* intersects the *x*-axis at the point $(\sqrt{p}, 0)$.) Take $M_0 = (a_0, 0) = (b, 0)$.

For each $j \in \mathbb{N}$, draw the line ℓ_j (whose equation is $x = a_j$) through M_j perpendicular to the *x*-axis. The intersection of ℓ_j with *C* is defined to be K_j : its coordinates are given by $K_j = (a_j, a_j^2 - p)$.

Draw the tangent t_j to the curve C at K_j . (The equation of t_j is $y = 2a_jx - (a_j^2 + p)$.) The intersection of t_j with the *x*-axis is defined to be $M_{j+1} = (a_{j+1}, 0)$.

Here are the properties of the infinite sequence $\{a_n\}_{n=0}^{\infty}$ *and the set T*:

(a) *For any* $n \in \mathbb{N}$ *,* $a_n > \alpha$ *.*

Remark. As a consequence, $\{a_n\}_{n=0}^{\infty}$ is bounded below in R by α , and T is bounded below in R by α . **Proof.**

Note that $a_0 = b > \alpha > 0$.

Suppose it were true that there existed some $n \in \mathbb{N}$ so that $a_n \leq \alpha$.

Then there would be a smallest $N \in \mathbb{N}$ so that $a_N > \alpha$ and $a_{N+1} \leq \alpha$. (Why? Apply the Well-ordering Principle for Integers.)

We would have
$$
\alpha \ge a_{N+1} = \frac{1}{2} \left(a_N + \frac{\alpha^2}{a_N} \right) = \frac{a_N^2 + \alpha^2}{2a_N}.
$$

Since $a_N > 0$, we would have $2\alpha a_N \ge a_N^2 + \alpha^2$. Then $(a_N - \alpha)^2 = a_N^2 - 2\alpha a_N + \alpha^2 \le 0$. Therefore $a_N = \alpha$. But $a_N > \alpha$. Contradiction arises.

Hence, in the first place, we have $a_n > \alpha$ for any $n \in \mathbb{N}$.

(b) $\{a_n\}_{n=0}^{\infty}$ *is strictly decreasing.*

Proof.

Let $n \in \mathbb{N}$. $a_n > \alpha > 0$. Then $a_n^2 - \alpha^2 > 0$ also.

Therefore
$$
a_{n+1} - a_n = \frac{1}{2} \left(a_n + \frac{\alpha^2}{a_n} \right) - a_n = \frac{1}{2} \left(-a_n + \frac{\alpha^2}{a_n} \right) = -\frac{a_n^2 - \alpha^2}{2a_n} < 0.
$$

Hence $a_{n+1} > a_n$.

(c)
$$
0 < a_n - \alpha < \frac{b - \alpha}{2^n}
$$
 for any $n \in \mathbb{N} \setminus \{0\}$.

Remark. Heuristically speaking, the infinite sequence $\{a_n\}_{n=0}^{\infty}$ will descend to as close as α as we like, but it will never 'reach' *α*.

Proof.

Let $n \in \mathbb{N}$. For each $k = 0, 1, 2, \cdots, n$, since $a_k > \alpha$, we have $a_k - \alpha > 0$. We have

$$
a_n - \alpha = \frac{1}{2} \left(a_{n-1} + \frac{\alpha^2}{a_{n-1}} \right) - \alpha = \frac{1}{2} (a_{n-1} - \alpha) + \frac{1}{2} \left(\frac{\alpha^2}{a_{n-1}} - \alpha \right)
$$

= $\frac{1}{2} (a_{n-1} - \alpha) - \frac{\alpha}{2} \cdot \frac{a_{n-1} - \alpha}{a_{n-1}} < \frac{1}{2} (a_{n-1} - \alpha) < \frac{1}{2^2} (a_{n-2} - \alpha) < \dots < \frac{1}{2^n} (a_0 - \alpha) = \frac{1}{2^n} (b - \alpha)$

(d) *T has no least element.*

Proof.

Suppose *T* had a least element, say, λ .

Then there would exist some $n_0 \in \mathbb{N}$ such that $\lambda = a_{n_0}$.

Now take $x_0 = a_{n_0+1}$. We would have $x_0 \in T$ and $x_0 = a_{n_0+1} < a_{n_0} = \lambda$.

Contradiction arises. Hence *T* has no least element in the first place.

- (e) *For any* $\beta \in \mathbb{R}$, if $\beta < \alpha$ then β *is a lower bound of T in* \mathbb{R} *.* (Exercise.)
- (f) *For any* $\beta \in \mathbb{R}$, if $\beta > \alpha$ *then* β *is not a lower bound of T in* \mathbb{R} *.*

Remark. We assume the validity of the statement (AP) below (which is known as the Archimedean Principle):

(AP) *For any* $\varepsilon > 0$ *, there exists some* $N \in \mathbb{N} \setminus \{0\}$ *such that* $N\varepsilon > 1$ *.*

Proof.

Pick any $\beta \in \mathbb{R}$. Suppose $\beta > \alpha$.

[We apply the proof-by-contradiction method to prove that *β* is not a lower bound of *T* in R.]

• Suppose *β* were a lower bound of *T* in R.

[Ask: Is there any element of *T* less than *β*?

We may reformulate the question in this way: can we name an appropriate natural number k for which $a_k < \beta$ holds?

This seems to be difficult to answer. So we further reformulate the question: can we name an appropriate natural number *k* for which $a_k - \alpha < \beta - \alpha$ holds?

This further reformulation is helpful because we know for sure that $0 < a_m - \alpha < \frac{b - \alpha}{2m}$ $\frac{\alpha}{2^m}$ for each $m \in \mathbb{N}$.

This suggests we ask for something 'more demanding': can we name an appropriate natural number *k* for which $a_k - \alpha < \frac{b - \alpha}{2k}$ $\frac{\alpha}{2^k} < \beta - \alpha$ holds?

This provides a hint on how we may apply Statement (AP) to answer the original question.]

Define $\varepsilon = \frac{\beta - \alpha}{l}$ $\frac{\beta}{b-\alpha}$. By definition, $\varepsilon > 0$.

By (AP), since $\varepsilon > 0$, there exists some $N \in \mathbb{N} \setminus \{0\}$ such that $N\varepsilon > 1$.

For the same ε, N , we have $2^N \varepsilon \ge N \varepsilon > 1$.

Then
$$
2^N \cdot \frac{\beta - \alpha}{b - \alpha} > 1
$$
. Therefore $a_{2^N} - \alpha < \frac{b - \alpha}{2^N} < \beta - \alpha$. Hence $a_{2^N} < \beta$.

But *β* was a lower bound of *T* in R. Contradiction arises.

(g) *T* has an infimum in \mathbb{R} , namely, α .

Proof.

The set of all lower bounds of *T* in R is the interval $(-\infty, \alpha]$, whose least element is α .

Further remarks.

- (1) The idea and the calculation will still work even when we do not require *p* to be a positive prime number; we may allow *p* to be any positive real number that we like. The infinite sequence $\{a_n\}_{n=0}^{\infty}$ will provide approximations which descends to $\alpha = \sqrt{p}$ as close as we like, but never reaches α .
- (2) How about finding cubic roots of positive real numbers?

Suppose p is a positive real number and $\alpha = \sqrt[3]{p}$. Suppose $b \in (\alpha, +\infty)$. Define infinite sequence $\{a_n\}_{n=0}^{\infty}$ *recursively by*

$$
\begin{cases}\n a_0 = b \\
 a_{n+1} = \frac{1}{3}(2a_n + \frac{\alpha^3}{a_n^2}) \quad \text{for any} \quad n \in \mathbb{N}\n\end{cases}
$$

This infinite sequence $\{a_n\}_{n=0}^{\infty}$ will provide approximations which descends to $\alpha = \sqrt[3]{p}$ as close as we like, but never reaches *α*.

(First draw the picture and formulate the algorithm which are analogous to the ones for the original example on square roots. This will give you a feeling on what this infinite sequence is 'doing'. Then try to formulate and prove some statements which are analogous to the ones that we have proved for the original example.)

- (3) Can you generalize the idea to finding quartic roots of positive real numbers? Quintic roots? *n*-th roots?
- (4) The idea and method described here is a 'concrete' example of the application of **Newton's Method (for finding approximate solutions of equations)**.

6. **Some 'coincidence' in Examples (1), (2), (3).**

We make some observations on Examples (1), (2), (3). Example (1).

• *The infinite sequence* $\left\{ \frac{(n+1)(n+4)}{(n+2)(n+3)} \right\}_{n=0}^{\infty}$ *is increasing and bounded above in* R*.*

The supremum of its set of all terms is 1*. Coincidentally, the limit of this infinite sequence is also* 1*.*

Example (2).

• The infinite sequence $\left\{\sum_{i=1}^{n} a_i\right\}$ *k*=0 $\left.\frac{9}{10^{k+1}}\right\}_{n=0}^{\infty}$ *is increasing and bounded above in* R*.*

The supremum of its set of all terms is 1*. Coincidentally, the limit of this infinite sequence is also* 1*.* Example (3).

• Let *p* be a positive prime number and $b \in (\sqrt{p}, +\infty)$. The infinite sequence $\{a_n\}_{n=0}^{\infty}$ defined recursively by

$$
\begin{cases}\n a_0 = b \\
 a_{n+1} = \frac{1}{2}(a_n + \frac{\alpha^2}{a_n}) \quad \text{for any} \quad n \in \mathbb{N}\n\end{cases}
$$

is decreasing and bounded below in R*.*

The infimum of its set of all terms is \sqrt{p} *. Coincidentally, the limit of this infinite sequence is also* \sqrt{p} *.*

The 'coincidence' in these examples is no isolated phenomenon. It is a consequence of the **Bounded-Monotone Theorem for infinite sequences of real numbers**.

7. **Bounded-Monotone Theorem for infinite sequences of real numbers.**

Let $\{a_n\}_{n=0}^{\infty}$ *be an infinite sequence of real numbers. Denote the set of all terms of* $\{a_n\}_{n=0}^{\infty}$ *by T.*

 $Suppose \{a_n\}_{n=0}^{\infty} \text{ is } \left\{\begin{array}{c} \text{increasing} \\ \text{decreasing} \end{array}\right\}.$ Further suppose $\{a_n\}_{n=0}^{\infty}$ is $\left\{\begin{array}{c}\text{bounded above} \\ \text{bounded below}\end{array}\right\}$ in $\mathbb R$. Denote the $\left\{\begin{array}{c}\text{supremum} \\ \text{infimum}\end{array}\right\}$ of T in $\mathbb R$ by σ , if it exists. $\text{Then } \begin{cases} \sup(T) \\ \inf(T) \end{cases}$ $\inf(T)$ $\left\{\right\}$ exists in \mathbb{R} , $\{a_n\}_{n=0}^{\infty}$ converges in \mathbb{R} , and $\lim_{n\to\infty} a_n = \sigma$.

(Furthermore, for any $\left\{ \begin{array}{c} \text{upper bound} \\ \text{lower bound} \end{array} \right\}$ *β of the infinite sequence* $\{a_n\}_{n=0}^{\infty}$ *, the inequality* $\left\{ \begin{array}{c} \sigma \leq \beta \\ \sigma \geq \beta \end{array} \right\}$ $\sigma \geq \beta$ } *holds. Also, for any* $k \in \mathbb{N}$, the inequality $\begin{cases} a_k \leq \sigma \\ a_k \geq \sigma \end{cases}$ $a_k \geq \sigma$ } *holds.)*

Remark. The Bounded-Monotone Theorem is a consequence of the **Least-upper-bound Axiom**: *Let A be a non-empty subset of* R*. Suppose A is bounded above in* R*. Then A has a least upper bound in* R*.*

8. **Appendix: Definition for limit of sequence, and a proof for the Bounded-Monotone Theorem.**

To give a satisfactory argument for the Bounded-Monotone Theorem, we first need to formulate a satisfactory definition for the notion of limit of sequence.

Definition.

Let ${a_n}_{n=0}^{\infty}$ be an infinite sequence of real numbers, and ℓ be a real number.

We say that $\{a_n\}_{n=0}^{\infty}$ *converges to* ℓ *, and write* $\lim_{n\to\infty} a_n = \ell$ *if the condition* (\star) *is satisfied:*

(*) For any $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that for any $k \in \mathbb{N}$, if $k > N$ then $|a_k - \ell| < \varepsilon$.

Proof of the Bounded-Monotone Theorem.

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers. Suppose $\{a_n\}_{n=0}^{\infty}$ is increasing, and is bounded above in R. Define $T = \{x \in \mathbb{R} : x = a_n \text{ for some } n \in \mathbb{N}\}.$

Note that $a_0 \in T$. Then $T \neq \emptyset$.

By assumption *T* is bounded above in R. Then by the Least-upper-bound Axiom, *T* has a supremum in R. Write $\sigma = \sup(T)$.

We verify that $\{a_n\}_{n=0}^{\infty}$ converges to σ :

• Pick any *ε >* 0.

[Can we name an appropriate natural number *N* for which it happens that whenever $k > N$, $|a_k - \sigma| < \varepsilon$? How?]

Note that $\sigma - \varepsilon < \sigma$.

Then by definition, $\sigma - \varepsilon$ is not an upper bound of *T* in R.

Therefore there exists some $x \in T$ such that $x > \sigma - \varepsilon$.

For the same *x*, there exists some $N \in \mathbb{N}$ such that $x = a_N$.

[Ask: Is it true that whenever $k > N$, $|a_k - \sigma| < \varepsilon$?]

Pick any $k \in \mathbb{N}$. Suppose $k > N$.

Then we have $a_k > a_N = x > \sigma - \varepsilon$ by assumption.

Therefore $|a_k - \sigma| = \sigma - a_k < \varepsilon$.

The result follows.