1. Definition.

Let {a,}o° be an infinite sequence in R.

(a) Let k € R.

L. upper bound o s . a, < K
K is said to be { lower bound } of {a,}>*, in R if, for any n € N, { }

bounded above

bounded below } in IR if there exists some k € IR such

(b) {an}o2, is said to be {

a, < K
that f N " .
at for any n < ’{anzﬁl}

Bounded-ness for infinite sequences of real numbers can be re-formulated in terms of
bounded-ness for their corresponding ‘sets of all terms’.
Lemma (1).

Let {a,}o2, be an infinite sequence in R. Define

T({an}o2y) ={x € R:x = a, for somen € N}.

(It is the set of all terms of {a,}2°.)
The statements below hold:

(a) {a,}>2, is bounded above in IR by B iff T({a,}5°,) is bounded above in R by .
(b) {an}o, is bounded below in R by 5 iff T({a,}5%,) is bounded below in R by .



2. Definition.

Let {a,}o° be an infinite sequence in R.

o . increasing | . ay < Gpi
(a) {an}>2, is said to be { decreasing } if, for any n € N, { }

o strictly increasing | . Ay < Qi
(b) {an}>2, is said to be { strictly decreasing } if, for any n € N, { .

Remarks on terminology.

(a) {a,}>2, is said to be monotonic if {a,}°°, is increasing or decreasing.

(b) {an o2, is said to be strictly monotonic if {a, }5°, is strictly increasing or strictly
decreasing.

Lemma (2).

Let {a,}>°, be an infinite sequence in R.

Define T({a,}:2y) = {x € R: x = a, for somen € N}.
The statements below hold:

(a) Suppose {a,}>2, is strictly increasing. Then T'({a,}°°,) has no greatest element.

(b) Suppose {a,}°°, is strictly decreasing. Then T'({a,}5%,) has no least element.



3. Example (1).
1 4
For any n € N, define a,, = Enj—Z;Eni?); Define T = {z | x = a,, for some n € N}.
n n

(a) {an}>2, is bounded above in IR b |.(Equivalently, T is bounded above in IR by |.)
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(¢c) T has no greatest element.
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(d) For any B € R, if 3 > 1 then § is an upper bound of T in R. (Exercise.)

(e) For any € R, if 8 < 1 then ( is not an upper bound of T' in IR.
Remark. We assume the validity of the statement (AP) below (which is known as

the Archimedean Principle):

For any € > 0, there exists some N € N\{0} such that Ne > 1. .
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() T has a supremum in IR, namely 1.

Proof.
The set of all upper bounds of T in R is [1,+00), whose least element is 1.
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For any n € N, define a,, = Z o Define T = {z | x = a,, for somen € N}.
k=0
(a) {an}2, is bounded above in R by 1. (Equivalently, T' is bounded above in R by 1. )

Proof.
Let n € N. We have
1—1/10m"
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Hence {a,}5°, is bounded above by 1.
(D) {an}5o, is strictly increasing.

Proof.

Let n € N. We have

B n+1 9 | n 9 - 9 |
An+1 — On = Z 10k+1 - Z 10k+1 — 1(Qnt2 > 0.
k=0 k=0 '

Then a,11 > ay.
(¢) T' has no greatest element. (Exercise.)



(d) For any B € R, if 3 > 1 then B is an upper bound of T' in R. (Exercise.)

(e) For any § € R, if 8 < 1 then [ is not an upper bound of T in IR.
Remark. We assume the validity of the statement (AP) below (which is known as

the Archimedean Principle):

For any € > 0, there exists sonﬁe N € N\{0} such that Ne > 1.
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(f) T has a supremum in R, namely 1. (Exercise.)
,TAIS 3 TL\L oAU ‘«\/Iﬂj O.% = [ ' (



5. Example (3).
Let p be a positive prime number. Define a = /p. Let b € (a, +00).

Let {a, }>°, be the infinite sequence defined recursively by

an = b
1 2
R i(an + Oé—) for any n € N
a,

{an};2, provides ‘better and better” approximations for o = /p:




Example (3).
Let p be a positive prime number. Define o = /p. Let b € (o, +00).

Let {a, }>°, be the infinite sequence defined recursively by

an = b
1 2
Aptr1 = 5(% + Oé—) forany n € N
A,

DefineT = {x € R: x = a,, for somen € N}.

(a) For anyn € N, a, > «.
Remark. Asa consequence, {a, 2, is bounded below in R by «r, and 7" is bounded
below in R by «a.
(b) {an}>2, is strictly decreasing.
b—«

2n

(c)0<a, —a<

for any n € N\{0}.

Remark.  Heuristically speaking, the infinite sequence {a,}>>, will descend to as
close as a as we like, but it will never ‘reach’ «.

(d) T" has no least element.

(e) For any 8 € R, if B < « then B is a lower bound of T in R.

(f) For any B € R, if 8 > « then 3 is not a lower bound of T in RR.
)

(g) T has an infimum in IR, namely, «.



Further remarks.
(1) Whether ‘p is a prime number’ or not is immaterial.
(2) How about finding cubic roots of positive real numbers?

Suppose p is a positive real number and o = ¥/p. Suppose b € (a,+00). Define
infinite sequence {a, }>°, recursively by

N = b
1 o’ ‘
Api1] = §(2an + a—nQ) orany n €N

{a,}>2, will provide ‘better and better” approximations for a.
(3) How about finding quartic roots of positive real numbers? Quintic roots? n-th roots?

(4) The idea and method described here is a ‘concrete’ example of the application of
Newton’s Method (for finding approximate solutions of equations).



. Some ‘coincidence’ in Examples (1), (2), (3).
We make some observations on Examples (1), (2), (3).

Example (1).

 The infinite sequence { is increasing and bounded above in IR.

(n+1)(n+4)1~
(n+2)(n+3) }

The supremum of its set of all terms is 1.

Coincidentally, the limit of this infinite sequence is also 1.

Example (2).

n

(©,@)
9
 The infinite sequence {Z } is increasing and bounded above in IR.

10k+1
k=0 n=>0

The supremum of its set of all terms is 1.
Coincidentally, the limit of this infinite sequence is also 1.



Some ‘coincidence’ in Examples (1), (2), (3).
Example (1).
Example (2).

Example (3).

« Let p be a positive prime number and b € (/p, +00). The infinite sequence {a,},
defined recursively by

o) = b
1 2
Apsl = §(an + a—) for any n € N
an

is decreasing and bounded below in IR.
The infimum of its set of all terms is \/p.
Coincidentally, the limit of this infinite sequence is also \/p.

The ‘coincidence’ in these examples is no isolated phenomenon. It is a consequence of the
Bounded-Monotone Theorem for infinite sequences of real numbers.



7. Bounded-Monotone Theorem for infinite sequences of real numbers.

Let {a, }>°, be an infinite sequence of real numbers.
Denote the set of all terms of {a,}>>, by T'.

~ . | Increasing ~ . | bounded above | .
Suppose {a,}5%, is { decreasing } Further suppose {a,}> is { bounded below (™

IR.
Denote the {

supremuim

PRV } of T'in R by o, if it exists.

sup(7T) o ~ . . B
Then { inf(T) } exists in IR, {a,}>%, converges in IR, and 7}1_{20 a, = 0.
upper bound

(Furthermore, for any { lower bound

} B of the infinite sequence {a, }°°,, the inequality

o<p . . ar < o
{ o> B } holds. Also, for any k € N, the inequality { o> o } holds.)

Remark. The Bounded-Monotone Theorem is a consequence of the Least-upper-
bound Axiom:

Let A be a non-empty subset of R. Suppose A is bounded above in R. Then A has a
least upper bound in IR.
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8. Appendix: Definition for limit of sequence, and a proof for the Bounded-
Monotone Theorem:.

To give a satisfactory argument for the Bounded-Monotone Theorem, we first need to
formulate a satisfactory definition for the notion of limit of sequence.

Definition.

Let {a,}>°, be an infinite sequence of real numbers, and £ be a real number.

We say that {a, }5%, converges to £, and write lim a, = £ if the condition (%) is satisfied:

n—r00
(x) For any € > 0, there exists some N € N such that for any k € N, if & > N then
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Proof of the Bounded-Monotone Theorem.

Let {a,}%, be an infinite sequence of real numbers. Suppose {an };2¢ s increasing, and
is bounded above in IR.
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