
1. Definition.
Let {an}∞n=0 be an infinite sequence in R.

(a) Let κ ∈ R.

κ is said to be
{

upper bound
lower bound

}
of {an}∞n=0 in R if, for any n ∈ N,

{
an ≤ κ
an ≥ κ

}
.

(b) {an}∞n=0 is said to be
{

bounded above
bounded below

}
in R if there exists some κ ∈ R such

that for any n ∈ N,
{
an ≤ κ
an ≥ κ

}
.

Bounded-ness for infinite sequences of real numbers can be re-formulated in terms of
bounded-ness for their corresponding ‘sets of all terms’.
Lemma (1).
Let {an}∞n=0 be an infinite sequence in R. Define

T ({an}∞n=0) = {x ∈ R : x = an for some n ∈ N}.

(It is the set of all terms of {an}∞n=0.)
The statements below hold:

(a) {an}∞n=0 is bounded above in R by β iff T ({an}∞n=0) is bounded above in R by β.
(b) {an}∞n=0 is bounded below in R by β iff T ({an}∞n=0) is bounded below in R by β.
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2. Definition.
Let {an}∞n=0 be an infinite sequence in R.

(a) {an}∞n=0 is said to be
{

increasing
decreasing

}
if, for any n ∈ N,

{
an ≤ an+1

an ≥ an+1

}
.

(b) {an}∞n=0 is said to be
{

strictly increasing
strictly decreasing

}
if, for any n ∈ N,

{
an < an+1

an > an+1

}
.

Remarks on terminology.
(a) {an}∞n=0 is said to be monotonic if {an}∞n=0 is increasing or decreasing.
(b) {an}∞n=0 is said to be strictly monotonic if {an}∞n=0 is strictly increasing or strictly

decreasing.

Lemma (2).
Let {an}∞n=0 be an infinite sequence in R.
Define T ({an}∞n=0) = {x ∈ R : x = an for some n ∈ N}.
The statements below hold:

(a) Suppose {an}∞n=0 is strictly increasing. Then T ({an}∞n=0) has no greatest element.
(b) Suppose {an}∞n=0 is strictly decreasing. Then T ({an}∞n=0) has no least element.
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5. Example (3).
Let p be a positive prime number. Define α =

√
p. Let b ∈ (α,+∞).

Let {an}∞n=0 be the infinite sequence defined recursively by a0 = b

an+1 =
1

2
(an +

α2

an
) for any n ∈ N

{an}∞n=0 provides ‘better and better’ approximations for α =
√
p:

x

y

0

α aj

Kjaj
2 − p

y = x2 − p

x

y

0

α aj

Kjaj
2 − p

aj+1

y = x2 − p y = 2ajx − (aj
2 + p)
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Example (3).
Let p be a positive prime number. Define α =

√
p. Let b ∈ (α,+∞).

Let {an}∞n=0 be the infinite sequence defined recursively by a0 = b

an+1 =
1

2
(an +

α2

an
) for any n ∈ N

Define T = {x ∈ R : x = an for some n ∈ N}.
(a) For any n ∈ N, an > α.

Remark. As a consequence, {an}∞n=0 is bounded below in R by α, and T is bounded
below in R by α.

(b) {an}∞n=0 is strictly decreasing.

(c) 0 < an − α <
b− α

2n
for any n ∈ N\{0}.

Remark. Heuristically speaking, the infinite sequence {an}∞n=0 will descend to as
close as α as we like, but it will never ‘reach’ α.

(d) T has no least element.
(e) For any β ∈ R, if β < α then β is a lower bound of T in R.
(f) For any β ∈ R, if β > α then β is not a lower bound of T in R.
(g) T has an infimum in R, namely, α.
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Further remarks.
(1) Whether ‘p is a prime number’ or not is immaterial.

(2) How about finding cubic roots of positive real numbers?
Suppose p is a positive real number and α = 3

√
p. Suppose b ∈ (α,+∞). Define

infinite sequence {an}∞n=0 recursively by a0 = b

an+1 =
1

3
(2an +

α3

an2
) for any n ∈ N

{an}∞n=0 will provide ‘better and better’ approximations for α.

(3) How about finding quartic roots of positive real numbers? Quintic roots? n-th roots?

(4) The idea and method described here is a ‘concrete’ example of the application of
Newton’s Method (for finding approximate solutions of equations).
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6. Some ‘coincidence’ in Examples (1), (2), (3).

We make some observations on Examples (1), (2), (3).

Example (1).

• The infinite sequence
{
(n + 1)(n + 4)

(n + 2)(n + 3)

}∞

n=0

is increasing and bounded above in R.

The supremum of its set of all terms is 1.
Coincidentally, the limit of this infinite sequence is also 1.

Example (2).

• The infinite sequence
{

n∑
k=0

9

10k+1

}∞

n=0

is increasing and bounded above in R.

The supremum of its set of all terms is 1.
Coincidentally, the limit of this infinite sequence is also 1.
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Some ‘coincidence’ in Examples (1), (2), (3).

Example (1). ...

Example (2). ...

Example (3).
• Let p be a positive prime number and b ∈ (

√
p,+∞). The infinite sequence {an}∞n=0

defined recursively by a0 = b

an+1 =
1

2
(an +

α2

an
) for any n ∈ N

is decreasing and bounded below in R.
The infimum of its set of all terms is √p.
Coincidentally, the limit of this infinite sequence is also √

p.

The ‘coincidence’ in these examples is no isolated phenomenon. It is a consequence of the
Bounded-Monotone Theorem for infinite sequences of real numbers.
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7. Bounded-Monotone Theorem for infinite sequences of real numbers.

Let {an}∞n=0 be an infinite sequence of real numbers.
Denote the set of all terms of {an}∞n=0 by T .

Suppose {an}∞n=0 is
{

increasing
decreasing

}
. Further suppose {an}∞n=0 is

{
bounded above
bounded below

}
in

R.

Denote the
{

supremum
infimum

}
of T in R by σ, if it exists.

Then
{
sup(T )
inf(T )

}
exists in R, {an}∞n=0 converges in R, and lim

n→∞
an = σ.

(Furthermore, for any
{

upper bound
lower bound

}
β of the infinite sequence {an}∞n=0, the inequality{

σ ≤ β
σ ≥ β

}
holds. Also, for any k ∈ N, the inequality

{
ak ≤ σ
ak ≥ σ

}
holds.)

Remark. The Bounded-Monotone Theorem is a consequence of the Least-upper-
bound Axiom:
Let A be a non-empty subset of R. Suppose A is bounded above in R. Then A has a
least upper bound in R.
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