














5. Example (C).
Let

S = {x ∈ R : x2 ≤ (
√
2 + 1)x−

√
2},

and T = S\Q.
(S is in fact the solution set of the inequality

x2 ≤ (
√
2 + 1)x−

√
2

with unknown x in the reals.)

(a) S has a greatest element and S has a least element.

Proof.
• Note that S = [1,

√
2].

S has a greatest element, namely
√
2.

S has a least element, namely 1.

(b) S is bounded above and below in R.

Proof.
• S has a least element and a greatest element.

They are respectively a lower bound and an upper bound of S in R.
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Example (C).
Let S = {x ∈ R : x2 ≤ (

√
2 + 1)x−

√
2}, and T = S\Q.

(c) T has a greatest element, and T has no least element.
Proof.
• Note that T = [1,

√
2]\Q.

• We have
√
2 ∈ [1,

√
2], and

√
2 is irrational. Then

√
2 ∈ T .

Pick any x ∈ T .
By definition, 1 ≤ x ≤

√
2 and x is irrational. In particular x ≤

√
2.

Therefore, by definition,
√
2 is a greatest element of T .

• Suppose T had a least element, say, λ. By definition, λ is irrational and 1 ≤ λ ≤
√
2.

Since λ is irrational, λ ̸= 1. Then λ > 1.
Define x0 =

1 + λ

2
. By definition, 1 < x0 < λ ≤

√
2.

Moreover x0 is irrational. (Why? Fill in the detail.)
Then x0 ∈ T . But x0 < λ and λ is a least element of T . Contradiction arises.

(d) T is bounded above and below in R.
Proof.
• T has a least element. It is a lower bound of T in R.
• By definition, for any x ∈ T , x ≤

√
2. Then

√
2 is an upper bound of T in R.
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7. Example (B) re-visited for a special observation.
Consider each subset S of R studied in Example (B):

(a) If S is bounded below in R, then its lower bounds seem to form a closed interval of the
form (−∞, ρ], which has a greatest element, namely ρ.
We may refer to this number ρ as the greatest amongst all lower bounds of S in R, or
simply, a greatest lower bound of S in R.
Remark. The only ‘cases’ where the justification for the observation is not easy
are [0, 1) ∩ Q, [0,+∞) ∩ Q.

(b) ...

S
least
element?

greatest
element?

bounded
below
in R?

bounded
above
in R?

set of
all lower
bounds?

set of
all upper
bounds?

greatest
lower
bound?

least
upper
bound?

[0, 1) 0 nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞) 0 nil Yes (by 0) No (−∞, 0] ∅ 0 nil
(0,+∞) nil nil Yes (by 0) No (−∞, 0] ∅ 0 nil
[0, 1)∩Q 0 nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞)∩Q 0 nil Yes (by 0) No (−∞, 0] ∅ 0 nil
[0, 1)\Q nil nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞)\Q nil nil Yes (by 0) No (−∞, 0] ∅ 0 nil

Remark. We can make similar observations on Example (C) and Example (D).

10



Example (B) re-visited for a special observation.
Consider each subset S of R studied in Example (B):

(a) ...
(b) If S is bounded above in R, then its upper bounds seem to form a closed interval of

the form [σ,+∞), which has a least element, namely σ.
We may refer to this number σ as the least amongst all upper bounds of S in R, or
simply, a least upper bound of S in R.
Remark. The only ‘case’ where the justification for the observation is not easy is
[0, 1) ∩ Q.

S
least
element?

greatest
element?

bounded
below
in R?

bounded
above
in R?

set of
all lower
bounds?

set of
all upper
bounds?

greatest
lower
bound?

least
upper
bound?

[0, 1) 0 nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞) 0 nil Yes (by 0) No (−∞, 0] ∅ 0 nil
(0,+∞) nil nil Yes (by 0) No (−∞, 0] ∅ 0 nil
[0, 1)∩Q 0 nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞)∩Q 0 nil Yes (by 0) No (−∞, 0] ∅ 0 nil
[0, 1)\Q nil nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞)\Q nil nil Yes (by 0) No (−∞, 0] ∅ 0 nil

Remark. We can make similar observations on Example (C) and Example (D).
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8. Definition.
Let S be a subset of R, and σ be a real number.

Suppose S is
{

bounded above
bounded below

}
in R, and σ is a(n)

{
upper bound
lower bound

}
of S in R.

σ is said to be a(n)
{

supremum
infimum

}
of S in R if σ is the

{
least element

greatest element

}
of the

set of all
{

upper bounds
lower bounds

}
of S in R.

Remarks.
(A) If S has a supremum in R, it is the unique supremum of S in R. Et cetera.

(B) Notation. We denote the
{

supremum
infimum

}
of S by

{
sup(S)
inf(S)

}
.

(C) Terminology. We may choose to write ‘S has a supremum’ as sup(S) exists’. Et
cetera. The situation is analogous for infimum.
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9. You may write down any non-empty subset of R you like, and will find that if the set
concerned is bounded above/below in R, it will have a supremum/infimum in R.

They will provide evidence for the Least-upper-bound Axiom, which is a funda-
mental property of the real number system.

Least-upper-bound Axiom for the reals (LUBA).
Let A be a non-empty subset of R. Suppose A is bounded above in R.
Then A has a least upper bound in R.

The statement (LUBA) is logically equivalent to the equally ‘obvious’ statement:
‘Greatest-lower-bound Axiom for the reals’ (GLBA).
Let A be a non-empty subset of R. Suppose A is bounded below in R.
Then A has a greatest lower bound in R.

(As an exercise in word games, prove that (LUBA), (GLBA) are indeed logically equiva-
lent.)
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10. Appendix: Formalization of the real number system.
Refer to the Handout Formalization of the Real Number System as understood in School
Maths.

There we have agreed that the real number system, as understood in school maths,
consists of:
• a set, denoted by R, whose elements are called real numbers, amongst them two

distinct real numbers called zero, one and denoted by 0, 1 respectively,
• the arithmetic operations + , ×, called addition, multiplication in the reals

respectively) , and
• a subset of R, denoted by R≥0, whose elements are called non-negative real num-

bers,
forming an ordered field, in the sense that
• the laws of arithmetic for the reals, namely the statements (A1)-(A11), and
• the laws of order for the reals (compatible to the arithmetic operations),

namely the statements (O1)-(O3),
are true statements.
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Laws of arithmetic for the reals.
(A1) For any a, b ∈ R, a + b ∈ R.
(A2) For any a, b, c ∈ R, (a + b) + c = a + (b + c).
(A3) There exists some z ∈ R, namely z = 0, such that for any a ∈ R, a + z = a and z + a = a.
(A4) For any a ∈ R, there exists some b ∈ R, called an additive inverse of a, such that a + b = 0 and

b + a = 0.
(A5) For any a, b ∈ R, a + b = b + a.
(A6) For any a, b ∈ R, a× b ∈ R.
(A7) For any a, b, c ∈ R, (a× b)× c = a× (b× c).
(A8) There exists some u ∈ R, namely u = 1, such that for any a ∈ R, a× u = a and u× a = a.
(A9) For any a ∈ R\{0}, there exists some b ∈ R, called a multiplicative inverse of a, such that

a× b = 1 and b× a = 1.
(A10) For any a, b ∈ R, a× b = b× a.
(A11) For any a, b, c ∈ R, (a + b)× c = (a× c) + (b× c) and a× (b + c) = (a× b) + (a× c).

Subtraction ‘−’ and division ÷ in the reals are defined in terms of addition and multiplication in
the reals, under the assumption of the validity of the statements (A1)-(A11).
For each a ∈ R, the additive inverse of a is proved to be unique and is denoted by −a; when a ̸= 0, the
multiplicative inverse of a is proved to be unique and is denoted by a−1.
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Laws of order for the reals (compatible to the arithmetic operations).
(O1) For any a, b ∈ R≥0, a + b ∈ R≥0 and a× b ∈ R≥0.
(O2) For any a ∈ R, a ∈ R≥0 or −a ∈ R≥0.
(O3) For any a ∈ R, if a ∈ R≥0 and −a ∈ R≥0 then a = 0.

The usual ordering for the reals, which is denoted by ≤, is defined in terms of subtraction and
non-negative real numbers.

We now further agree that the real number system (as understood in school maths)
satisfies Least-upper-bound Axiom for the reals (LUBA).

Let A be a non-empty subset of R. Suppose A is bounded above in R. Then A has a
least upper bound in R.

With the inclusion of (LUBA), we have completed the formalization of the real number
system as understood in school maths.
In your mathematical analysis course, the Least-upper-bound Axiom serves as the ulti-
mate justification for other ‘intuitively obvious’ results which you have been using without
questioning in infinitesimal calculus, such as:
• the Bounded-Monotone Theorem for infinite sequences of real numbers,
• the Intermediate-Value Theorem, and
• the Mean-Value Theorem.
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