1. Definition.

Let S be a subset of
$$\mathbb{R}$$
.
(a) Let $\lambda \in S$.
 λ is said to be a $\left\{ \begin{array}{c} \text{greatest} \\ \text{least} \end{array} \right\}$ element of S if, for any $x \in S$, $\left\{ \begin{array}{c} x \leq \lambda \\ x \geq \lambda \end{array} \right\}$.
(b) S is said to have a $\left\{ \begin{array}{c} \text{greatest} \\ \text{least} \end{array} \right\}$ element if there exists some $\lambda \in S$ such that for
any $x \in S$, $\left\{ \begin{array}{c} x \leq \lambda \\ x \geq \lambda \end{array} \right\}$.

Remarks.

(A) 'If it exists then it is unique': Suppose λ, λ' are $\{ \text{greatest} \}$ elements of S. Then $\lambda = \lambda'$. (B) Notation. We denote the $\{ \text{greatest} \\ \text{least} \}$ element of S by $\{ \max(S) \\ \min(S) \}$. (C) **Terminology.** We may choose to write

'S has a greatest element'

as

 $\max(S)$ exists'.

Et cetera. The situation is analogous for least element.

2. Definition.

Let S be a subset of \mathbb{R} . (a) Let $\beta \in \mathbb{R}$. β is said to be $a(n) \left\{ \begin{array}{l} \text{upper} \\ \text{lower} \end{array} \right\}$ bound of S in \mathbb{R} if, for any $x \in S$, $\left\{ \begin{array}{l} x \leq \beta \\ x \geq \beta \end{array} \right\}$. (b) S is said to be bounded $\left\{ \begin{array}{l} \text{above} \\ \text{below} \end{array} \right\}$ in \mathbb{R} if there exists some $\beta \in \mathbb{R}$ such that for any $x \in S$, $\left\{ \begin{array}{l} x \leq \beta \\ x \geq \beta \end{array} \right\}$.

(c) S is said to be **bounded in** \mathbb{R} if S is bounded above in \mathbb{R} and bounded below in \mathbb{R} .

Remarks.

- (A) If S has one upper bound then it has infinitely many upper bounds. It does not make sense to write '*the* upper bound of S is so-and-so'. The situation is similar for 'being bounded below'.
- (B) Suppose λ is a greatest element of S. Then λ is an upper bound of S. (How about its converse?)

The situation is similar for 'least element' and 'lower bound'.

3. Example (A). (Well-ordering Principle for Integers.)

Recall this statement below, known as the Well-ordering Principle for Integers (WOPI): Let S be a non-empty subset of \mathbb{N} . S has a least element.

There are various re-formulations of the statement (WOPI):

- (WOPIL) Let T be a non-empty subset of \mathbb{Z} . Suppose T is bounded below in \mathbb{R} by some $\beta \in \mathbb{Z}$. Then T has a least element.
- (WOPIG) Let U be a non-empty subset of \mathbb{Z} . Suppose U is bounded above in \mathbb{R} by some $\gamma \in \mathbb{Z}$. Then U has a greatest element.

(The proof for the logical equivalence of (WOPI), (WOPIL), (WOPIG) is left as an exercise.)

From now on all three of them are referred to as the Well-ordering Principle for Integers.

4. Example (B).

S	least element?	greatest element?	bounded below	bounded above	
		0101110110.	in R ?	in IR ?	
[0, 1)	O Aa	nil Ab	Ac	Yes(byl) Ad	
$[0, +\infty)$	Ba	Ni Bb	Bc	No Bd	
$(0, +\infty)$	Ca	Cb	Cc	Cd	
$[0,1) \cap \mathbb{Q}$	Da	Db	Dc	Dd	
$[0,+\infty)\cap \mathbb{Q}$	Ea	Eb	Ec .	Ed	
$[0,1) \setminus \mathbb{Q}$	Fa	Fb	Fc	Fd	
$[0,+\infty)\backslash \mathbb{Q}$	Ga	Gb	Gc	Gd	

....

(Ab): [0, 1) has no greatest element.
Proof. [Proof by - contradiction argument.]
Write
$$S = [0, 1)$$
.
Suppre S had a greatest element, say, λ .
[$\frac{\lambda}{S}$ $\frac{$

Define
$$X_0 = \frac{\lambda + 1}{2}$$
.
Then $0 \le \lambda < x_0 < 1$.
We have $X_0 \in S$ and $X_0 > \lambda$.
Catradiction arises.

Since
$$\lambda \in S$$
, we have $\lambda \ge 0$.
Define $x_0 = \lambda + 1$.
Then $0 \le \lambda < X_0$.
We have $x_0 \in S$ and $X_0 > \lambda$.
Contradiction arises.

Define $X_0 = \beta + 1$. Then $0 \le \beta < x_0$. We have $X_0 \in S$ and $X_0 > \beta$. Contradiction arises.

Example (B).

S	least element?	greatest element?	bounded below in IR ?	bounded above in IR ?	
[0, 1)		nil Ab	<i>Ac</i>	Yes (by 1) Ad	
$[0, +\infty)$	O Ba	hil Bb		No Bd	
$(0, +\infty)$	nil Ca	nil Cb	Cc	No Cd	
$[0,1) \cap \mathbb{Q}$	Ò Da	nil Db	$\frac{Dc}{Dc}$	Yes (by 1) Dd	
$[0,+\infty) \cap \mathbb{Q}$	\mathbf{O} Ea	nil Eb	Ec	N₀ Ed	
$[0,1)ackslash \mathbb{Q}$	nil Fa	hil Fb	Fc	Yes (byl) $_{Fd}$	
$[0,+\infty)ackslash \mathbb{Q}^{n}$	nil Ga	nil Gb	\downarrow Gc	No Gd	

5. Example (C).

Let

$$S = \{ x \in \mathbb{R} : x^2 \le (\sqrt{2} + 1)x - \sqrt{2} \},\$$

and $T = S \setminus \mathbb{Q}$.

(S is in fact the solution set of the inequality)

$$x^2 \le (\sqrt{2} + 1)x - \sqrt{2}$$

with unknown x in the reals.)

(a) S has a greatest element and S has a least element.

Proof.

• Note that $S = [1, \sqrt{2}]$. *S* has a greatest element, namely $\sqrt{2}$. *S* has a least element, namely 1.

(b) S is bounded above and below in ${\sf I\!R}.$

Proof.

• S has a least element and a greatest element.

They are respectively a lower bound and an upper bound of S in \mathbb{R} .

Example (C).

Let $S = \{x \in \mathbb{R} : x^2 \le (\sqrt{2} + 1)x - \sqrt{2}\}$, and $T = S \setminus \mathbb{Q}$.

(c) T has a greatest element, and T has no least element. **Proof.**

- Note that $T = [1, \sqrt{2}] \setminus \mathbb{Q}$.
- We have $\sqrt{2} \in [1, \sqrt{2}]$, and $\sqrt{2}$ is irrational. Then $\sqrt{2} \in T$. Pick any $x \in T$.

By definition, $1 \le x \le \sqrt{2}$ and x is irrational. In particular $x \le \sqrt{2}$. Therefore, by definition, $\sqrt{2}$ is a greatest element of T.

• Suppose T had a least element, say, λ . By definition, λ is irrational and $1 \le \lambda \le \sqrt{2}$. Since λ is irrational, $\lambda \ne 1$. Then $\lambda > 1$.

Define $x_0 = \frac{1+\lambda}{2}$. By definition, $1 < x_0 < \lambda \le \sqrt{2}$.

Moreover x_0 is irrational. (Why? Fill in the detail.)

Then $x_0 \in T$. But $x_0 < \lambda$ and λ is a least element of T. Contradiction arises.

(d) T is bounded above and below in \mathbb{R} .

Proof.

- T has a least element. It is a lower bound of T in \mathbb{R} .
- By definition, for any $x \in T$, $x \leq \sqrt{2}$. Then $\sqrt{2}$ is an upper bound of T in **R**.

Heuritically, S'= {2, 3, 4, 5, 6, ...; 6. Example (D). $1, \frac{5}{6}, \frac{3}{4}, \frac{7}{10}, \dots;$ Let $S = \left\{ \frac{1}{m+1} + \frac{1}{n+1} \mid m, n \in \mathbb{N} \right\}.$ $\frac{2}{3}, \frac{7}{12}, \frac{8}{15}, \cdots;$ (a) S has a greatest element and S has no least element. $\frac{1}{2}, \frac{9}{20}, \dots;$ (b) S is bounded above and below in \mathbb{R} . 2 5,.... i Proof of (a). · We verify that S has a greatest element, namely 2: * Note that $2 \in S_{\bullet}(\text{Reason}: 2 = \frac{1}{0+1} + \frac{1}{0+1}, \text{ and } 0 \in \mathbb{N} -)$ TCheck: Pick any XES. By the definition of S, there exists some m, n $\in \mathbb{N}$ such that $x = \frac{1}{m+1} + \frac{1}{n+1}$. For any XES, Since m, $n \in \mathbb{N}$, we have $m \ge 0$ and $n \ge 0$. ×≤2. Then $x = \frac{1}{m+1} + \frac{1}{n+1} \le \frac{1}{0+1} + \frac{1}{0+1} = 2$. * It follows that 2 is a greatest element of S. .

Example (D). Let $S = \left\{ \frac{1}{m+1} + \frac{1}{n+1} \mid m, n \in \mathbb{N} \right\}.$ (a) S has a greatest element and S has no least element. (b) S is bounded above and below in \mathbb{R} . Proof of (a). [We apply the proof-by-contradiction method to prove that] S has no least element. Suppose S had a least element, say, 2 By definition, XES. [Ask: "Is there any element of S which is less than 2? How to conceive it?] By the definition of S there exist some mo, no EN such that $\lambda = \frac{1}{m_0 + 1} + \frac{1}{n_0 + 1}$ Define $x_0 = \frac{1}{m_0 + 2} + \frac{1}{n_0 + 1}$. By the definition of S, $x_0 \in S$. (Why?) $Also, X_0 = \frac{1}{m_0+2} + \frac{1}{n_0+1} < \frac{1}{m_0+1} + \frac{1}{n_0+1} = \lambda$ (why?) Contradiction arises.

7. Example (B) re-visited for a special observation.

Consider each subset S of \mathbb{R} studied in Example (B):

(a) If S is bounded below in ℝ, then its lower bounds seem to form a closed interval of the form (-∞, ρ], which has a greatest element, namely ρ.
We may refer to this number ρ as the greatest amongst all lower bounds of S in ℝ, or

simply, a greatest lower bound of S in \mathbb{R} .

Remark. The only 'cases' where the justification for the observation is not easy are $[0,1) \cap \mathbb{Q}$, $[0,+\infty) \cap \mathbb{Q}$.

(b) ...

S $\begin{vmatrix} 1\\ \epsilon \end{vmatrix}$	least element?	greatest element?	bounded	bounded	set of	set of	greatest	least
			below	above	all lower	all upper	lower	upper
			in IR ?	in IR ?	bounds?	bounds?	bound?	bound?
[0,1)	0	nil	Yes (by 0)	Yes (by 1)	$(-\infty, 0]$	$[1, +\infty)$	0	1
$[0, +\infty)$	0	nil	Yes (by 0)	No	$(-\infty, 0]$	Ø	0	nil
$(0, +\infty)$	nil	nil	Yes (by 0)	No	$(-\infty, 0]$	Ø	0	nil
$[0,1) \cap \mathbf{Q}$	0	nil	Yes (by 0)	Yes (by 1)	$(-\infty, 0]$	$[1, +\infty)$	0	1
$[0,+\infty)\cap \mathbb{Q}$	0	nil	Yes (by 0)	No	$(-\infty, 0]$	Ø	0	nil
$[0,1)ackslash \mathbf{Q}$	nil	nil	Yes (by 0)	Yes (by 1)	$(-\infty,0]$	$[1, +\infty)$	0	1
$[0,+\infty) \setminus \mathbb{Q}$	nil	nil	Yes (by 0)	No	$(-\infty,0]$	Ø	0	nil

Remark. We can make similar observations on Example (C) and Example (D).

Example (B) re-visited for a special observation.

Consider each subset S of \mathbb{R} studied in Example (B):

(a) ...

(b) If S is bounded above in \mathbb{R} , then its upper bounds seem to form a closed interval of the form $[\sigma, +\infty)$, which has a least element, namely σ .

We may refer to this number σ as the least amongst all upper bounds of S in \mathbb{R} , or simply, a least upper bound of S in \mathbb{R} .

Remark. The only 'case' where the justification for the observation is not easy is $[0,1) \cap \mathbb{Q}$.

loggt	loagt	montost	bounded	bounded	set of	set of	greatest	least
S	least	greatest	below	above	all lower	all upper	lower	upper
	element:	element:	in IR ?	in IR ?	bounds?	bounds?	bound?	bound?
[0, 1)	0	nil	Yes (by 0)	Yes (by 1)	$(-\infty, 0]$	$[1, +\infty)$	0	1
$[0, +\infty)$	0	nil	Yes (by 0)	No	$(-\infty,0]$	Ø	0	nil
$(0, +\infty)$	nil	nil	Yes (by 0)	No	$(-\infty,0]$	Ø	0	nil
$[0,1) \cap \mathbf{Q}$	0	nil	Yes (by 0)	Yes (by 1)	$(-\infty,0]$	$[1, +\infty)$	0	1
$[0,+\infty)\cap \mathbb{Q}$	0	nil	Yes (by 0)	No	$(-\infty, 0]$	Ø	0	nil
$[0,1)ackslash \mathbf{Q}$	nil	nil	Yes (by 0)	Yes (by 1)	$(-\infty,0]$	$[1, +\infty)$	0	1
$[0,+\infty) \setminus \mathbb{Q}$	nil	nil	Yes (by 0)	No	$(-\infty,0]$	Ø	0	nil

Remark. We can make similar observations on Example (C) and Example (D).

8. **Definition.**

Let S be a subset of \mathbb{R} , and σ be a real number. Suppose S is $\left\{\begin{array}{l} \text{bounded above} \\ \text{bounded below} \end{array}\right\}$ in \mathbb{R} , and σ is $a(n) \left\{\begin{array}{l} \text{upper bound} \\ \text{lower bound} \end{array}\right\}$ of S in \mathbb{R} . σ is said to be $a(n) \left\{\begin{array}{l} \text{supremum} \\ \text{infimum} \end{array}\right\}$ of S in \mathbb{R} if σ is the $\left\{\begin{array}{l} \text{least element} \\ \text{greatest element} \end{array}\right\}$ of the set of all $\left\{\begin{array}{l} \text{upper bounds} \\ \text{lower bounds} \end{array}\right\}$ of S in \mathbb{R} .

Remarks.

(A) If S has a supremum in \mathbb{R} , it is the unique supremum of S in \mathbb{R} . Et cetera.

(B) Notation. We denote the
$$\left\{ \begin{array}{l} \text{supremum}\\ \text{infimum} \end{array} \right\}$$
 of S by $\left\{ \begin{array}{l} \sup(S)\\ \inf(S) \end{array} \right\}$.

(C) **Terminology.** We may choose to write 'S has a supremum' as $\sup(S)$ exists'. Et cetera. The situation is analogous for infimum.

9. You may write down any non-empty subset of \mathbb{R} you like, and will find that if the set concerned is bounded above/below in \mathbb{R} , it will have a supremum/infimum in \mathbb{R} .

They will provide evidence for the **Least-upper-bound Axiom**, which is a fundamental property of the real number system.

Least-upper-bound Axiom for the reals (LUBA).

Let A be a non-empty subset of \mathbb{R} . Suppose A is bounded above in \mathbb{R} . Then A has a least upper bound in \mathbb{R} .

The statement (LUBA) is logically equivalent to the equally 'obvious' statement: 'Greatest-lower-bound Axiom for the reals' (GLBA).

Let A be a non-empty subset of \mathbb{R} . Suppose A is bounded below in \mathbb{R} . Then A has a greatest lower bound in \mathbb{R} .

(As an exercise in word games, prove that (LUBA), (GLBA) are indeed logically equivalent.)

10. Appendix: Formalization of the real number system.

Refer to the Handout Formalization of the Real Number System as understood in School Maths.

There we have agreed that the **real number system**, as understood in school maths, consists of:

- a set, denoted by IR, whose elements are called real numbers, amongst them two distinct real numbers called zero, one and denoted by 0, 1 respectively,
- the arithmetic operations + , $\times,$ called addition, multiplication in the reals respectively) , and
- a subset of ${\sf I\!R},$ denoted by ${\sf I\!R}_{\geq 0},$ whose elements are called **non-negative real numbers**,

forming an **ordered field**, in the sense that

- the **laws of arithmetic for the reals**, namely the statements (A1)-(A11), and
- the **laws of order for the reals (compatible to the arithmetic operations)**, namely the statements (O1)-(O3),

are true statements.

Laws of arithmetic for the reals.

- (A1) For any $a, b \in \mathbb{R}$, $a + b \in \mathbb{R}$.
- (A2) For any $a, b, c \in \mathbb{R}$, (a + b) + c = a + (b + c).
- (A3) There exists some $z \in \mathbb{R}$, namely z = 0, such that for any $a \in \mathbb{R}$, a + z = a and z + a = a.
- (A4) For any $a \in \mathbb{R}$, there exists some $b \in \mathbb{R}$, called an additive inverse of a, such that a + b = 0 and b + a = 0.
- (A5) For any $a, b \in \mathbb{R}$, a + b = b + a.
- (A6) For any $a, b \in \mathbb{R}$, $a \times b \in \mathbb{R}$.
- (A7) For any $a, b, c \in \mathbb{R}$, $(a \times b) \times c = a \times (b \times c)$.
- (A8) There exists some $u \in \mathbb{R}$, namely u = 1, such that for any $a \in \mathbb{R}$, $a \times u = a$ and $u \times a = a$.
- (A9) For any $a \in \mathbb{R}\setminus\{0\}$, there exists some $b \in \mathbb{R}$, called a **multiplicative inverse of** a, such that $a \times b = 1$ and $b \times a = 1$.
- (A10) For any $a, b \in \mathbb{R}$, $a \times b = b \times a$.
- (A11) For any $a, b, c \in \mathbb{R}$, $(a + b) \times c = (a \times c) + (b \times c)$ and $a \times (b + c) = (a \times b) + (a \times c)$.

Subtraction '--' and division \div in the reals are defined in terms of addition and multiplication in the reals, under the assumption of the validity of the statements (A1)-(A11).

For each $a \in \mathbb{R}$, the additive inverse of a is proved to be unique and is denoted by -a; when $a \neq 0$, the multiplicative inverse of a is proved to be unique and is denoted by a^{-1} .

Laws of order for the reals (compatible to the arithmetic operations).

 $\begin{array}{l} ({\rm O1}) \ {\it For \ any \ } a,b \in {\rm I\!R}_{\geq 0}, \ a+b \in {\rm I\!R}_{\geq 0} \ and \ a \times b \in {\rm I\!R}_{\geq 0}. \\ ({\rm O2}) \ {\it For \ any \ } a \in {\rm I\!R}, \ a \in {\rm I\!R}_{\geq 0} \ or \ -a \in {\rm I\!R}_{\geq 0}. \\ ({\rm O3}) \ {\it For \ any \ } a \in {\rm I\!R}, \ if \ a \in {\rm I\!R}_{\geq 0} \ and \ -a \in {\rm I\!R}_{\geq 0} \ then \ a = 0. \end{array}$

The usual ordering for the reals, which is denoted by \leq , is defined in terms of subtraction and non-negative real numbers.

We now further agree that the real number system (as understood in school maths) satisfies Least-upper-bound Axiom for the reals (LUBA).

Let A be a non-empty subset of \mathbb{R} . Suppose A is bounded above in \mathbb{R} . Then A has a least upper bound in \mathbb{R} .

With the inclusion of (LUBA), we have completed the formalization of the real number system as understood in school maths.

In your *mathematical analysis* course, the Least-upper-bound Axiom serves as the ultimate justification for other 'intuitively obvious' results which you have been using without questioning in *infinitesimal calculus*, such as:

- the Bounded-Monotone Theorem for infinite sequences of real numbers,
- \bullet the $\mathbf{Intermediate-Value\ Theorem},$ and
- the Mean-Value Theorem.