1. Definition.
Let S be a subset of IR.

(a) Let A € S.

. : | greatest , <\
A 1s said to be a { least } element of S if, for any x € 5, { >\ }

greatest
least

(b) S is said to have a {

cg JB=A
any T Yz

Remarks.

(A) ‘If it exists then it is unique’” Swppet N ,}\,{ Wy zgﬁz elemeto O/EY e ', 7L\ﬂ”~ =N

(B) Notation. We denote the { groatest } element of S' by { max(S) }
min(.S)

} element if there exists some \ € S such that for

least
(C) Terminology. We may choose to write
‘S has a greatest element’
as
max(S) exists’.

Et cetera. The situation is analogous for least element.



2. Definition.
Let S be a subset of IR.

(a) Let B € R.
<
B is said to be a(n) { upbet } bound of S in R if, for any z € .5, { i ~ g }

lower

above

(b) S is said to be bounded { below

r < f
for any © € S, {5625}

(c) S is said to be bounded in R if S is bounded above in IR and bounded below in R.

} in R if there exists some (8 € IR such that

Remarks.

(A) If S has one upper bound then it has infinitely many upper bounds.
It does not make sense to write ‘the upper bound of .S is so-and-so’.
The situation is similar for ‘being bounded below’.
(B) Suppose ) is a greatest element of S. Then \ is an upper bound of 5.

(How about its converse?)
The situation is similar for ‘least element’ and ‘lower bound’.



3. Example (A). (Well-ordering Principle for Integers.)
Recall this statement below, known as the Well-ordering Principle for Integers (WOPI):

Let S be a non-empty subset of N. S has a least element.

There are various re-formulations of the statement (WOPI):

e (WOPIL) Let T be a non-empty subset of Z.
Suppose T is bounded below in R by some 8 € Z.
Then T has a least element.

o (WOPIG) Let U be a non-empty subset of Z.
Suppose U is bounded above in R by some «y € Z.
Then U has a greatest element.

(The proof for the logical equivalence of (WOPI), (WOPIL), (WOPIG) is left as an

exercise. )

From now on all three of them are referred to as the Well-ordering Principle for Integers.



4. Example (B).

bounded | bounded
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(Aa): [0,1) has a least element, namely, () -
Proof. Wete S=fo,1).
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(Ad): [0, 1) is bounded above in R by | .
Proof. \ite S=(o,1) .
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(AD): [0,1) has no greatest element.
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(Bb): [0, 400) has no greatest element
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(Bd): [0, +00) is not bounded above in IR.
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:Exaﬁqﬂe (B).
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5. Example (C).
Let
S={recR:2?> < (V24 Da -2},
and T = S\Q.
(S is in fact the solution set of the inequality

? < (V2+ 1)z — V2

with unknown z in the reals.)

(a) S has a greatest element and S has a least element.

Proof.
e Note that S = [1,v/2].

S has a greatest element, namely v/2.
S has a least element, namely 1.

(b) S is bounded above and below in IR.
Proof.

« S has a least element and a greatest element.
They are respectively a lower bound and an upper bound of S in IR.



Example (C).
Let S={r€R: 2> < (v2+ 1)z -2}, and T = S\Q.

(¢) T has a greatest element, and T has no least element.
Proof.
e Note that T' = [1, v2]\Q.
e We have v/2 € [1,/2], and v/2 is irrational. Then v/2 € T'.
Pick any x € T'.
By definition, 1 < x < V2 and z is irrational. In particular x < V2.
Therefore, by definition, v/2 is a greatest element of 7.

e Suppose T had a least element, say, A. By definition, \ is irrational and 1 < \ < /2.

Since A is irrational, A # 1. Then A > 1.

1+ A
Define xy = % By definition, 1 < zp < A < v/2.

Moreover xy is irrational. (Why? Fill in the detail.)
Then xg € T'. But xg < A and ) is a least element of 1. Contradiction arises.

(d) T is bounded above and below in R.
Proof.

 T" has a least element. It is a lower bound of 1" in IR.
e By definition, for any z € T, x < /2. Then v/2 is an upper bound of T in IR.
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6. Example (D).

1
LetS:{ \mnEN}
m + 1 n+1

(a) S has a greatest element and S has no least element.

(b) S is bounded above and below in IR.
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Example (D).
1 1
LetS:{ + \m,nEN}.

m+1 n+1

(a) S has a greatest element and S has no least element.

(b) S is bounded above and below in IR.

Proof of (a).
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7. Example (B) re-visited for a special observation.

Consider each subset S of R studied in Example (B):

(a) If S'is bounded below in IR, then its lower bounds seem to form a closed interval of the
form (—oo, p|, which has a greatest element, namely p.

We may refer to this number p as the greatest amongst all lower bounds of S in R, or
simply, a greatest lower bound of S in IR.

Remark.

The only ‘cases’ where the justification for the observation is not easy
are [0,1) N Q, [0, +00) N Q.

bounded | bounded | set of set of greatest | least
least greatest
S cloment? | eloment? below above all lower | all upper | lower upper
in R? in R? bounds? | bounds? | bound? | bound?
0,1) 0 nil | Yes (by 0)| Yes (by 1)| (—00,0] | [1,400) 0 1
[0, +00) 0 nil | Yes (by 0) No (—00, 0] 0 0 nil
(0, 4+00) nil nil | Yes (by 0) No (—o0, 0] 0 0 nil
0,1)NQ 0 nil | Yes (by 0)| Yes (by 1)| (—o00,0] | [1,+00) 0 1
[0, +00)NQ 0 nil | Yes (by 0) No (—o00, 0] 0 0 nil
0, )\ Q nil nil | Yes (by 0)| Yes (by 1)| (—o00,0] | [1,+00) 0 1
[0, +00)\ @ nil nil | Yes (by 0) No (—o0, 0] 0 0 nil
Remark. We can make similar observations on Example (C) and Example (D).



Example (B) re-visited for a special observation.
Consider each subset S of R studied in Example (B):

(a) ...

(b) If S is bounded above in R, then its upper bounds seem to form a closed interval of
the form [0, +00), which has a least element, namely o.
We may refer to this number o as the least amongst all upper bounds of S in IR, or
simply, a least upper bound of S in IR.

Remark. The only ‘case’ where the justification for the observation is not easy is
0,1)NQ.
bounded | bounded | set of set of greatest | least
least greatest
S cloment? | eloment? below above all lower | all upper | lower upper
in IR? in IR? bounds? | bounds? | bound? | bound?
0, 1) 0 nil | Yes (by 0)| Yes (by 1)| (—o00,0] | [1,400) 0 1
[0, +00) 0 nil | Yes (by 0) No (—00, 0] 0 0 nil
(0, +00) nil nil | Yes (by 0) No (—o0, 0] 0 0 nil
0,1H)NQ 0 nil | Yes (by 0)| Yes (by 1)| (—o00,0] | [1,+00) 0 1
0, +00)NQ 0 nil | Yes (by 0) No (—o0, 0] 0 0 nil
0, 1)\Q nil nil | Yes (by 0)| Yes (by 1)| (—00,0] | [1,400) 0 1
0, +00)\ @ nil nil | Yes (by 0) No (—o0, 0] 0 0 nil
Remark. We can make similar observations on Example (C) and Example (D).




8. Definition.
Let S be a subset of IR, and o be a real number.

bounded above upper bound

Suppose S is { botnded be]()w} in R, and o is a(n) { lower botnd } of S in RR.

o is said to be a(n) { SUPTEIIUM } of S in R if o is the { least clement } of the

infimum greatest element

upper bounds
lower bounds

set of all { } of S in R.

Remarks.

(A) If S has a supremum in R, it is the unique supremum of S in IR. Et cetera.

. supremum sup(.9)
(B) Notation. We denote the {  Brm } of S by { inf(S) }

(C) Terminology. We may choose to write ‘S has a supremum’ as sup(.S) exists. Et
cetera. The situation is analogous for infimum.



9. You may write down any non-empty subset of IR you like, and will find that if the set
concerned is bounded above/below in IR, it will have a supremum /infimum in R.

They will provide evidence for the Least-upper-bound Axiom, which is a funda-
mental property of the real number system.

Least-upper-bound Axiom for the reals (LUBA).

Let A be a non-empty subset of R. Suppose A is bounded above in IR.
Then A has a least upper bound in IR.

The statement (LUBA) is logically equivalent to the equally ‘obvious’ statement:
‘Greatest-lower-bound Axiom for the reals’ (GLBA).

Let A be a non-empty subset of IR. Suppose A is bounded below in IR.

Then A has a greatest lower bound in IR.

(As an exercise in word games, prove that (LUBA), (GLBA) are indeed logically equiva-
lent.)



10. Appendix: Formalization of the real number system.

Refer to the Handout Formalization of the Real Number System as understood in School
Maths.

There we have agreed that the real number system, as understood in school maths,
consists of:

« a set, denoted by IR, whose elements are called real numbers, amongst them two
distinct real numbers called zero, one and denoted by 0, 1 respectively,

« the arithmetic operations + , X, called addition, multiplication in the reals
respectively) , and

e a subset of IR, denoted by IR
bers,

~o, Whose elements are called non-negative real num-

forming an ordered field, in the sense that

« the laws of arithmetic for the reals, namely the statements (A1)-(A11), and

- the laws of order for the reals (compatible to the arithmetic operations),
namely the statements (O1)-(03),

are true statements.



Laws of arithmetic for the reals.

(A1) For any a,b € R, a+b € R.

(A2) For any a,b,c € R, (a+b)+c=a+ (b+c).

(A3) There exists some z € R, namely z = 0, such that for any a € R, a + 2z = a and z + a = a.
(Ad)

A4) For any a € IR, there exists some b € R, called an additive inverse of a, such that a + b = 0 and
b+a=0.

(A5) For any a,b € R, a+b="0b+ a.

(A6) For any a,b € R, a x b e R.

(A7) For any a,b,c € R, (a x b) X ¢ =a x (b X ¢).

(A8) There exists some u € IR, namely u = 1, such that for any a € R, a X u = a and u X a = a.
(A9)

A9) For any a € R\{0}, there exists some b € IR, called a multiplicative inverse of a, such that
axb=1andbxa=1.

(A10) For any a,b € R, a x b=1b X a.
(A11) For any a,b,c € R, (a+b) x c=(a x¢c)+ (bxc)anda x (b+c) = (a x b) + (a X ¢).

Subtraction ‘-’ and division = in the reals are defined in terms of addition and multiplication in

the reals, under the assumption of the validity of the statements (A1)-(A11).

For each a € IR, the additive inverse of a is proved to be unique and is denoted by —a; when a # 0, the
multiplicative inverse of a is proved to be unique and is denoted by a™!.



Laws of order for the reals (compatible to the arithmetic operations).
(O1) For any a,b € R, a+be€ R janda xbe R,
(02) For anya € R, a € R,; or —a € R,
(03) For any a € R, ifa € R, and —a € R then a = 0.

The usual ordering for the reals, which is denoted by <, is defined in terms of subtraction and
non-negative real numbers.

We now further agree that the real number system (as understood in school maths)
satisfies Least-upper-bound Axiom for the reals (LUBA).

Let A be a non-empty subset of IR. Suppose A is bounded above in IR. Then A has a
least upper bound in IR.

With the inclusion of (LUBA), we have completed the formalization of the real number
system as understood in school maths.

In your mathematical analysis course, the Least-upper-bound Axiom serves as the ulti-
mate justification for other ‘intuitively obvious’ results which you have been using without
questioning in infinitesimal calculus, such as:

- the Bounded-Monotone Theorem for infinite sequences of real numbers,
 the Intermediate-Value Theorem, and

e the Mean-Value Theorem.



