1. Definition.

Let
$$
S
$$
 be a subset of \mathbb{R} .
\n(a) Let $\lambda \in S$.
\n λ is said to be a $\left\{\begin{array}{l}\text{greatest} \\ \text{least} \end{array}\right\}$ element of S if, for any $x \in S$, $\left\{\begin{array}{l}\text{$x \leq \lambda$} \\ \text{$x \geq \lambda$} \end{array}\right\}$.
\n(b) S is said to have a $\left\{\begin{array}{l}\text{greatest} \\ \text{least} \end{array}\right\}$ element if there exists some $\lambda \in S$ such that for any $x \in S$, $\left\{\begin{array}{l}\text{$x \leq \lambda$} \\ \text{$x \geq \lambda$} \end{array}\right\}$.

Remarks.

(A) 'If it exists then it is unique': Suppose λ , λ' are $\{\text{stack}\}\$ elements of S. Then $\lambda = \lambda'$.

(B) **Notation.** We denote the $\{\text{greatest}\}$ element of S by $\{\text{max}(S)\}\$. (C) **Terminology.** We may choose to write

'S has a greatest element'

as

 $max(S) exists'.$

Et cetera. The situation is analogous for least element.

2. Definition.

Let *S* be a subset of *R*.
\n(a) Let
$$
\beta \in \mathbb{R}
$$
.
\n β is said to be a(n) { upper
lower} bound of *S* in *R* if, for any $x \in S$, $\left\{ \frac{x \le \beta}{x \ge \beta} \right\}$.
\n(b) *S* is said to be **bounded** { above
below} in *R* if there exists some $\beta \in \mathbb{R}$ such that
\nfor any $x \in S$, $\left\{ \frac{x \le \beta}{x \ge \beta} \right\}$.

(c) S is said to be **bounded in** \mathbb{R} if S is bounded above in \mathbb{R} and bounded below in \mathbb{R} .

Remarks.

- (A) If S has one upper bound then it has infinitely many upper bounds. It does not make sense to write 'the upper bound of S is so-and-so'. The situation is similar for 'being bounded below'.
- (B) Suppose λ is a greatest element of S. Then λ is an upper bound of S. (How about its converse?)

The situation is similar for 'least element' and 'lower bound'.

3. Example (A). (Well-ordering Principle for Integers.)

Recall this statement below, known as the Well-ordering Principle for Integers (WOPI): Let S be a non-empty subset of \mathbb{N} . S has a least element.

There are various re-formulations of the statement (WOPI):

- \bullet (WOPIL) Let T be a non-empty subset of \mathbb{Z} . Suppose T is bounded below in \mathbb{R} by some $\beta \in \mathbb{Z}$. Then T has a least element.
- \bullet (WOPIG) Let U be a non-empty subset of \mathbb{Z} . Suppose U is bounded above in $\mathbb R$ by some $\gamma \in \mathbb Z$. Then U has a greatest element.

(The proof for the logical equivalence of (WOPI), (WOPIL), (WOPIG) is left as an exercise.)

From now on all three of them are referred to as the Well-ordering Principle for Integers.

4. Example (B).

(Aa): [0, 1) has a least element, namely, 0.
Proof. Write $S = [0, 1)$.
Note: $\{x \in S, 4\}$
For any $x \in S$ and $x \in S$.
For any $x \in S$ and $x \in S$.
1. particular, $x \ge 0$.
1. particular, $x \ge 0$.
1. The particular $x \ge 0$.
1. The particular $x \ge 0$.
1. The particular $x \ge 0$.
1. The particular $x \ge 0$.
1. The particular $x \in S$.
1. The particular $x \in S$.
1. The particular $x \in S$.
1. The particular $x \in S$.
1. The particular $x \le 1$.
1. The particular $x \le 1$.
1. The particular $x \le 1$.
1. The particular $x \le 1$.
1. The particular $x \le 1$.
1. The particular $x \le 1$.
1. The particular $x \le 1$.
1. The following that S is bounded above in R by 1 .

 $\langle \mathcal{A} \rangle$

 $\sim 10^{11}$ and $\sim 10^{11}$

(Ab): [0, 1) has no greatest element.

\n**Proof.**
$$
\Sigma
$$
 for $\{-b\}$ - coordinates ω .

\n $\sqrt{\text{rate}} \leq 5$ 0, 1.

\n $\text{Suppne } S$ had a greatest element, say, λ .

\n $\begin{bmatrix} \frac{2}{5} & \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{$

Define
$$
x_{0} = \frac{\lambda + 1}{2}
$$

Then $0 \le \lambda < x_{0} < 1$.
We have $x_{0} \in S$ and $x_{0} > \lambda$.
Cathadition arises.

Since
$$
\lambda \in S
$$
, we have $\lambda \ge 0$.
Define $x_0 = \lambda + 1$.
Then $0 \le \lambda \le x_0$.
We have $x_0 \in S$ and $x_0 > \lambda$.
Cartadition aviles.

Define $x_{0} = \beta + 1$.
Then $0 \le \beta < x_{0}$. We have X. ES and X. > B.
Contradiction avises.

Example (B).

5. **Example (C).**

Let

$$
S = \{ x \in \mathbb{R} : x^2 \le (\sqrt{2} + 1)x - \sqrt{2} \},
$$

and $T = S \setminus \mathbb{Q}$ *.*

(*S* is in fact the solution set of the inequality

$$
x^2 \le (\sqrt{2} + 1)x - \sqrt{2}
$$

with unknown *x* in the reals.)

(a) *S has a greatest element and S has a least element.*

Proof.

• Note that $S = [1, 1]$ *√* 2]. *S* has a greatest element, namely $\sqrt{2}$. *S* has a least element, namely 1.

(b) *S is bounded above and below in* R*.*

Proof.

• *S* has a least element and a greatest element. They are respectively a lower bound and an upper bound of *S* in R. **Example (C).**

Let $S = \{x \in \mathbb{R} : x^2 \leq ($ *√* 2 + 1)*x − √* $\overline{2}$ *},* and $T = S \setminus \mathbb{Q}$ *.*

(c) *T has a greatest element, and T has no least element.* **Proof.** *√*

- Note that $T = [1, 1]$ $\overline{2}]\backslash\mathbb{Q}$.
- We have $\sqrt{2} \in [1, 1]$ $\sqrt{2}$, and $\sqrt{2}$ is irrational. Then $\sqrt{2} \in T$. Pick any $x \in T$. *√*

By definition, $1 \leq x \leq$ 2 and *x* is irrational. In particular $x \leq$ Δy definition, $1 \leq x \leq \sqrt{2}$ and *x* is irrational. In particular, Therefore, by definition, $\sqrt{2}$ is a greatest element of *T*.

• Suppose *T* had a least element, say, $λ$. By definition, $λ$ is irrational and $1 ≤ λ ≤$ *√* 2. Since λ is irrational, $\lambda \neq 1$. Then $\lambda > 1$.

√

2.

Define $x_0 =$ $1 + \lambda$ 2 . By definition, $1 < x_0 < \lambda \leq$ *√* 2.

Moreover x_0 is irrational. (Why? Fill in the detail.)

Then $x_0 \in T$. But $x_0 < \lambda$ and λ is a least element of *T*. Contradiction arises.

(d) *T is bounded above and below in* R*.*

Proof.

- *T* has a least element. It is a lower bound of *T* in R. *√*
- By definition, for any $x \in T$, $x \leq \sqrt{2}$. Then $\sqrt{2}$ is an upper bound of *T* in **R**.

Heuritically, $S' = \{2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \dots \}$ $6.$ Example (D) . $\frac{5}{6}, \frac{3}{4}, \frac{7}{10}, \cdots$ Let $S = \left\{ \frac{1}{m+1} + \frac{1}{n+1} \middle| m, n \in \mathbb{N} \right\}.$ $\frac{2}{3}, \frac{7}{12}, \frac{8}{15}, \dots$ (a) S has a greatest element and S has no least element. $\frac{1}{2}$, $\frac{q}{20}$, ... (b) S is bounded above and below in \mathbb{R} . $\frac{2}{5}$, ... *i* Proof of (a). · We verify that S has a greatest element, namely 2: * Note that $26S_{0}$ (Reason: $2=\frac{1}{0+1}+\frac{1}{0+1}$, and $0 \in \mathbb{N}$.) By the definition of S,
there exists some m, $n \in \mathbb{N}$ such that $x = \frac{1}{m+1} + \frac{1}{n+1}$. $\frac{1}{x\epsilon\zeta}$ Since m, n EM, we have $m \ge 0$ and $n \ge 0$. $X \leq 2.$ Then $x = \frac{1}{m+1} + \frac{1}{n+1} \le \frac{1}{0+1} + \frac{1}{0+1} = 2$. * It follows that 2 is a greatest element of S, 0

Example (D) . Let $S = \left\{ \frac{1}{m+1} + \frac{1}{n+1} \middle| m, n \in \mathbb{N} \right\}.$ (a) S has a greatest element and S has no least element. (b) S is bounded above and below in \mathbb{R} . Proof of (a). [We apply the proof-by-contradiction method to prove that] S has no least element. Suppose S had a least element, say, λ By definition, $\lambda \in S$. [Ask: "Is there any element of S which is less than 2? How to conceive it?] By the definition of S there exist some mo, no $\in \mathbb{N}$ such that $\lambda = \frac{1}{m_o + 1} + \frac{1}{n_o + 1}$ Define $x_0 = \frac{1}{m_0+2} + \frac{1}{n_0+1}$. By the definition of S, $x_0 \in S$. (Why?) Also, $x_0 = \frac{1}{m_0 + 2} + \frac{1}{n_0 + 1} < \frac{1}{m_0 + 1} + \frac{1}{n_0 + 1} = \lambda$. (lthy?) Contradiction avises. M

7. **Example (B) re-visited for a special observation.**

Consider each subset *S* of **R** studied in Example (B):

(a) If *S* is bounded below in R, then its lower bounds seem to form a closed interval of the form $(-\infty, \rho]$, which has a greatest element, namely ρ .

We may refer to this number ρ as the greatest amongst all lower bounds of S in **R**, or simply, a greatest lower bound of *S* in R.

Remark. The only 'cases' where the justification for the observation is not easy α are $[0, 1) \cap \mathbb{Q}, [0, +\infty) \cap \mathbb{Q}.$

 (b) ...

Remark. We can make similar observations on Example (C) and Example (D).

Example (B) re-visited for a special observation.

Consider each subset *S* of **R** studied in Example (B):

 (a) ...

(b) If *S* is bounded above in R, then its upper bounds seem to form a closed interval of the form $[\sigma, +\infty)$, which has a least element, namely σ .

We may refer to this number σ as the least amongst all upper bounds of S in **R**, or simply, a least upper bound of *S* in R.

Remark. The only 'case' where the justification for the observation is not easy is $[0, 1) \cap \mathbb{Q}$.

Remark. We can make similar observations on Example (C) and Example (D).

8. **Definition.**

Let *S* be a subset of \mathbb{R} , and σ be a real number. $Suppose S is \begin{cases} bounded above \\ bounded below \end{cases}$ in \mathbb{R} , and σ is $a(n) \begin{cases} upper bound \\ lower bound \end{cases}$ *of S in* R*.* σ *is said to be a(n)* $\left\{ \begin{array}{c} \textbf{supremum} \\ \textbf{infimum} \end{array} \right\}$ of *S* in \mathbb{R} *if* σ *is the* $\left\{ \begin{array}{c} \text{least element} \\ \text{greatest element} \end{array} \right\}$ *of the set of all upper bounds lower bounds of S in* R*.*

Remarks.

(A) If *S* has a supremum in \mathbb{R} , it is the unique supremum of *S* in \mathbb{R} . Et cetera.

(B) Notation. We denote the
$$
\left\{ \begin{array}{c} \textbf{supremum} \\ \textbf{infimum} \end{array} \right\}
$$
 of S by $\left\{ \begin{array}{c} \sup(S) \\ \inf(S) \end{array} \right\}$.

(C) **Terminology.** We may choose to write '*S has a supremum*' as sup(*S*) *exists*'. Et cetera. The situation is analogous for infimum.

9. You may write down any non-empty subset of $\mathbb R$ you like, and will find that if the set concerned is bounded above/below in R, it will have a supremum/infimum in R.

They will provide evidence for the **Least-upper-bound Axiom**, which is a fundamental property of the real number system.

Least-upper-bound Axiom for the reals (LUBA).

Let A be a non-empty subset of R*. Suppose A is bounded above in* R*. Then A has a least upper bound in* R*.*

The statement (LUBA) is logically equivalent to the equally 'obvious' statement: **'Greatest-lower-bound Axiom for the reals' (GLBA).**

Let A be a non-empty subset of R*. Suppose A is bounded below in* R*. Then A has a greatest lower bound in* R*.*

(As an exercise in word games, prove that (LUBA), (GLBA) are indeed logically equivalent.)

10. **Appendix: Formalization of the real number system.**

Refer to the Handout *Formalization of the Real Number System as understood in School Maths*.

There we have agreed that the **real number system**, as understood in school maths, consists of:

- a set, denoted by R, whose elements are called **real numbers**, amongst them two distinct real numbers called **zero**, **one** and denoted by 0, 1 respectively,
- the arithmetic operations + , *×*, called **addition, multiplication in the reals** respectively) , and
- \bullet a subset of $\mathbb{R},$ denoted by $\mathbb{R}_{\geq 0},$ whose elements are called $\textbf{non-negative real num-}$ **bers**,

forming an **ordered field**, in the sense that

- the **laws of arithmetic for the reals**, namely the statements (A1)-(A11), and
- the **laws of order for the reals (compatible to the arithmetic operations)**, namely the statements $(O1)-(O3)$,

are true statements.

Laws of arithmetic for the reals.

- $(A1)$ *For any* $a, b \in \mathbb{R}$, $a + b \in \mathbb{R}$.
- (A2) *For any* $a, b, c \in \mathbb{R}$, $(a + b) + c = a + (b + c)$ *.*
- (A3) There exists some $z \in \mathbb{R}$, namely $z = 0$, such that for any $a \in \mathbb{R}$, $a + z = a$ and $z + a = a$.
- (A4) For any $a \in \mathbb{R}$, there exists some $b \in \mathbb{R}$, called an **additive inverse of** a, such that $a + b = 0$ and $b + a = 0$.
- (A5) *For any* $a, b \in \mathbb{R}$, $a + b = b + a$.
- $(A6)$ *For any* $a, b \in \mathbb{R}$, $a \times b \in \mathbb{R}$.
- (A7) *For any* $a, b, c \in \mathbb{R}$, $(a \times b) \times c = a \times (b \times c)$ *.*
- (A8) There exists some $u \in \mathbb{R}$, namely $u = 1$, such that for any $a \in \mathbb{R}$, $a \times u = a$ and $u \times a = a$.
- (A9) For any $a \in \mathbb{R} \setminus \{0\}$, there exists some $b \in \mathbb{R}$, called a **multiplicative inverse of** a , such that $a \times b = 1$ *and* $b \times a = 1$ *.*
- $(A10)$ *For any* $a, b \in \mathbb{R}$, $a \times b = b \times a$.
- (A11) For any $a, b, c \in \mathbb{R}$, $(a + b) \times c = (a \times c) + (b \times c)$ and $a \times (b + c) = (a \times b) + (a \times c)$.

Subtraction '*−***' and division** *÷* **in the reals** are defined in terms of addition and multiplication in the reals, under the assumption of the validity of the statements (A1)-(A11).

For each $a \in \mathbb{R}$, the additive inverse of *a* is proved to be unique and is denoted by $-a$; when $a \neq 0$, the multiplicative inverse of *a* is proved to be unique and is denoted by a^{-1} .

Laws of order for the reals (compatible to the arithmetic operations).

(O1) For any $a, b \in \mathbb{R}_{\geq 0}$, $a + b \in \mathbb{R}_{\geq 0}$ and $a \times b \in \mathbb{R}_{\geq 0}$. (O2) *For any* $a \in \mathbb{R}$, $a \in \mathbb{R}_{\geq 0}$ *or* $-a \in \mathbb{R}_{\geq 0}$ *.* (O3) For any $a \in \mathbb{R}$, if $a \in \mathbb{R}_{\geq 0}$ and $-a \in \mathbb{R}_{\geq 0}$ then $a = 0$.

The **usual ordering for the reals**, which is denoted by \leq , is defined in terms of subtraction and non-negative real numbers.

We now further agree that the real number system (as understood in school maths) satisfies **Least-upper-bound Axiom for the reals (LUBA).**

Let A be a non-empty subset of R*. Suppose A is bounded above in* R*. Then A has a least upper bound in* R*.*

With the inclusion of (LUBA), we have completed the formalization of the real number system as understood in school maths.

In your *mathematical analysis* course, the Least-upper-bound Axiom serves as the ultimate justification for other 'intuitively obvious' results which you have been using without questioning in *infinitesimal calculus*, such as:

- the **Bounded-Monotone Theorem for infinite sequences of real numbers**,
- the **Intermediate-Value Theorem**, and
- the **Mean-Value Theorem**.