1. **Definition**.

Let S be a subset of \mathbb{R} . Let $\lambda \in S$. λ is said to be a **least element of** S if $(\lambda \leq x \text{ whenever } x \in S)$.

Well-Ordering Principle for integers (WOPI).

Let S be a non-empty subset of N. S has a least element.

Remark. A more formal way to express 'S has a least element' is: there exists some $\lambda \in S$ such that λ is a least element of S.

2. Theorem (DAN). (Division Algorithm for natural numbers.)

Let $m, n \in \mathbb{N}$. Suppose $n \neq 0$. Then there exist some unique $q, r \in \mathbb{N}$ such that m = qn + r and $0 \leq r < n$.

Remark on terminology. In the statement of Theorem (DAN), the numbers q, r are called the **quotient** and **remainder** in the division of m by n.

Proof of Theorem (DAN). The result follows from Lemma (E) and Lemma (U). The argument for Lemma (E) relies on the Well-Ordering Principle for integers.

3. Lemma (E). (Existence part of Theorem (DAN).)

Let $m, n \in \mathbb{N}$. Suppose $n \neq 0$. Then there exist some $q, r \in \mathbb{N}$ such that m = qn + r and $0 \leq r < n$.

Lemma (U). (Uniqueness part of Theorem (DAN).)

Let $m, n \in \mathbb{N}$. Suppose $n \neq 0$. Let $q, r, q', r' \in \mathbb{N}$. Suppose m = qn + r and $0 \leq r < n$ and m = q'n + r' and $0 \leq r' < n$. Then q = q' and r = r'.

4. Proof of Lemma (E).

Let $m, n \in \mathbb{N}$. Suppose $n \neq 0$.

[Idea. Remember that we want to name appropriate natural numbers q, r satisfying both m = qn + r and $0 \le r < n$. We put these two conditions in the form $0 \le m - qn = r < n$. This suggests we look for a candidate for r from the list of natural numbers

$$m-0 \cdot n, m-1 \cdot n, m-2n, m-3n, \cdots$$

This is a descending arithmetic progression. Does it terminate or not? It has to terminate; otherwise, it would 'descend into the negative integers'. A candidate for r is 'located' where this list terminates. (Why?) With this candidate for r we also obtain a candidate for q. Now we are ready to proceed with the formal argument.]

(Ea) Define $S = \{x \in \mathbb{N} : \text{There exists some } k \in \mathbb{N} \text{ such that } x = m - kn\}.$ By definition, S is a subset of N. Note that $m = m - 0 \cdot n$ and $0 \in \mathbb{N}$. Therefore $m \in S$. $S \neq \emptyset$. Hence S is a non-empty subset of N.

By the Well-ordering Principle for Integers, S has a least element, which we denote by r.

(Eb) By definition, since $r \in S$, we have $r \in \mathbb{N}$.

Also, since $r \in S$, there exists some $q \in \mathbb{N}$ such that r = m - qn. So m = qn + r for these $q, r \in \mathbb{N}$.

- (Ec) By definition, $r \ge 0$. We verify that r < n:
 - Suppose it were true that r ≥ n. Write r̂ = r n. We would have r̂ ∈ N and r̂ < r. Note that r̂ = r n = m (q + 1)n.
 Since q ∈ N, we would have q + 1 ∈ N.
 Then r̂ ∈ S by the definition of S.
 But r is a least element of S. Contradiction arises.
 Hence r < n in the first place.

The result follows.

5. Proof of Lemma (U).

Let $m, n \in \mathbb{N}$. Suppose $n \neq 0$. Suppose $q, r, q', r' \in \mathbb{N}$. Suppose m = qn + r and $0 \leq r < n$ and m = q'n + r' and $0 \leq r' < n$. We have qn + r = q'n + r'. Therefore |q - q'|n = |r' - r|. Since $0 \leq r \leq n - 1$ and $0 \leq r' \leq n - 1$, we have $0 \leq |q - q'|n = |r - r'| \leq n - 1$. Since $|q - q'| \in \mathbb{N}$, we have |q - q'|n = 0 or $|q - q'|n \geq n$. Since $|q - q'| \leq n - 1 < n$, we have |q - q'|n = 0. Therefore q = q'. Also, r = r'.

6. Corollary (DAZ1). (Division Algorithm for integers.)

Let $m, n \in \mathbb{Z}$. Suppose n > 0. Then there exist some unique $q, r \in \mathbb{Z}$ such that m = qn + r and $0 \le r < n$. Proof of Corollary (DAZ1).

- (a) ['Existence argument'.] Let $m, n \in \mathbb{Z}$. Suppose n > 0. Note that $m \ge 0$ or m < 0.
 - (Case 1). Suppose $m \ge 0$. Then, by Theorem (DAN), there exists some $q, r \in \mathbb{N}$ such that m = qn + rand $0 \le r < n$.
 - (Case 2). Suppose m < 0. [Idea: Is there an integer in the list m + 0 ⋅ n, m + 1 ⋅ n, m + 2n, m + 3n, ... which is non-negative? If yes, can we apply Theorem (DAN) to this non-negative integer?] Note that -m ∈ N. Since n > 0, we have m + (-m)n = (-m)(n 1) ∈ N. By Theorem (DAN), there exist some p, r ∈ N such that m + (-m)n = pn + r and 0 ≤ r < n. Now define q = p + m. Since p, m ∈ Z, we have q ∈ Z. For these q, r, we have m = -(-m)n + pn + r = (p + m)n + r = qn + r.
- (b) ['Uniqueness argument'.] Exercise. (Refer to the proof of Lemma (U). Change 'Let $m, n \in \mathbb{N}$. Suppose $n \neq 0$. Suppose $q, r, q', r' \in \mathbb{N}$ ' to 'Let $m, n \in \mathbb{Z}$. Suppose n > 0. Suppose $q, r, q', r' \in \mathbb{Z}$ '. See what happens.)

Corollary (DAZ2). (Division Algorithm for integers.)

Let $m, n \in \mathbb{Z}$. Suppose $n \neq 0$. Then there exist some unique $q, r \in \mathbb{Z}$ such that m = qn + r and $0 \leq r < |n|$.

Proof of Corollary (DAZ2). Exercise.

Remark on terminology. In each of Corollary (DAZ1) and Corollary (DAZ2), the numbers q, r are called the **quotient** and **remainder** in the division of m by n.

7. Refer to Theorem (2) in the Handout De Moivre's Theorem and roots of unity:

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

- (a) ω_n is an *n*-th root of unity.
- (b) The *n*-th roots of unity are the *n* complex numbers of modulus 1, given by 1, ω_n , ω_n^2 , ..., ω_n^{n-1} .

Corollary (DAZ1) is the tacit assumption needed in the argument for this result.

8. Theorem (DIV).

Let $m, n \in \mathbb{Z}$. Suppose $n \neq 0$. m is divisible by n iff the remainder is 0 in the division of m by n.

Proof of Theorem (DIV). Exercise.

Remark. This result provides the connection between the definition of divisibility and Division Algorithm. **Definition.**

Let $n \in \mathbb{Z}$.

- (a) n is said to be even if n is divisible by 2.
- (b) n is said to be **odd** if n is not divisible by 2.

Theorem (O). (Equivalent formulation of the definition of odd-ness for integers.)

Let $n \in \mathbb{Z}$. The statements (\dagger), (\ddagger) are logically equivalent:

- (\dagger) n is odd.
- (‡) There exists some $k \in \mathbb{Z}$ such that n = 2k + 1.

Proof of Theorem (O). Exercise.