
MATH1050 Division Algorithm

1. Definition.

Let S be a subset of R. Let λ ∈ S. λ is said to be a least element of S if (λ ≤ x whenever x ∈ S).

Well-Ordering Principle for integers (WOPI).

Let S be a non-empty subset of N. S has a least element.

Remark. A more formal way to express ‘S has a least element’ is: there exists some λ ∈ S such that λ is a
least element of S.

2. Theorem (DAN). (Division Algorithm for natural numbers.)

Let m,n ∈ N. Suppose n 6= 0. Then there exist some unique q, r ∈ N such that m = qn+ r and 0 ≤ r < n.

Remark on terminology. In the statement of Theorem (DAN), the numbers q, r are called the quotient and

remainder in the division of m by n.

Proof of Theorem (DAN). The result follows from Lemma (E) and Lemma (U). The argument for Lemma

(E) relies on the Well-Ordering Principle for integers.

3. Lemma (E). (Existence part of Theorem (DAN).)

Let m,n ∈ N. Suppose n 6= 0. Then there exist some q, r ∈ N such that m = qn+ r and 0 ≤ r < n.

Lemma (U). (Uniqueness part of Theorem (DAN).)

Let m,n ∈ N. Suppose n 6= 0. Let q, r, q′, r′ ∈ N. Suppose m = qn + r and 0 ≤ r < n and m = q′n + r′ and

0 ≤ r′ < n. Then q = q′ and r = r′.

4. Proof of Lemma (E).

Let m,n ∈ N. Suppose n 6= 0.

[Idea. Remember that we want to name appropriate natural numbers q, r satisfying both m = qn + r and

0 ≤ r < n. We put these two conditions in the form 0 ≤ m − qn = r < n. This suggests we look for a
candidate for r from the list of natural numbers

m− 0 · n,m− 1 · n,m− 2n,m− 3n, · · ·

This is a descending arithmetic progression. Does it terminate or not? It has to terminate; otherwise, it

would ‘descend into the negative integers’. A candidate for r is ‘located’ where this list terminates. (Why?)

With this candidate for r we also obtain a candidate for q. Now we are ready to proceed with the formal

argument.]

(Ea) Define S = {x ∈ N : There exists some k ∈ N such that x = m− kn}.

By definition, S is a subset of N.

Note that m = m− 0 · n and 0 ∈ N. Therefore m ∈ S. S 6= ∅.

Hence S is a non-empty subset of N.

By the Well-ordering Principle for Integers, S has a least element, which we denote by r.

(Eb) By definition, since r ∈ S, we have r ∈ N.

Also, since r ∈ S, there exists some q ∈ N such that r = m− qn.

So m = qn+ r for these q, r ∈ N.

(Ec) By definition, r ≥ 0. We verify that r < n:

• Suppose it were true that r ≥ n. Write r̂ = r − n. We would have r̂ ∈ N and r̂ < r.

Note that r̂ = r − n = m− (q + 1)n.

Since q ∈ N, we would have q + 1 ∈ N.
Then r̂ ∈ S by the definition of S.
But r is a least element of S. Contradiction arises.
Hence r < n in the first place.

The result follows.
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5. Proof of Lemma (U).

Let m,n ∈ N. Suppose n 6= 0. Suppose q, r, q′, r′ ∈ N.

Suppose m = qn+ r and 0 ≤ r < n and m = q′n+ r′ and 0 ≤ r′ < n.

We have qn+ r = q′n+ r′. Therefore |q − q′|n = |r′ − r|.

Since 0 ≤ r ≤ n− 1 and 0 ≤ r′ ≤ n− 1, we have 0 ≤ |q − q′|n = |r − r′| ≤ n− 1.

Since |q − q′| ∈ N, we have |q − q′|n = 0 or |q − q′|n ≥ n.

Since |q − q′|n ≤ n− 1 < n, we have |q − q′|n = 0. Therefore q = q′. Also, r = r′.

6. Corollary (DAZ1). (Division Algorithm for integers.)

Let m,n ∈ Z. Suppose n > 0. Then there exist some unique q, r ∈ Z such that m = qn+ r and 0 ≤ r < n.

Proof of Corollary (DAZ1).

(a) [‘Existence argument’.] Let m,n ∈ Z. Suppose n > 0. Note that m ≥ 0 or m < 0.

• (Case 1). Suppose m ≥ 0. Then, by Theorem (DAN), there exists some q, r ∈ N such that m = qn + r

and 0 ≤ r < n.

• (Case 2). Suppose m < 0. [Idea: Is there an integer in the list m + 0 · n,m + 1 · n,m + 2n,m + 3n, · · ·

which is non-negative? If yes, can we apply Theorem (DAN) to this non-negative integer?]

Note that −m ∈ N. Since n > 0, we have m+ (−m)n = (−m)(n− 1) ∈ N.

By Theorem (DAN), there exist some p, r ∈ N such that m+ (−m)n = pn+ r and 0 ≤ r < n.

Now define q = p+m. Since p,m ∈ Z, we have q ∈ Z.

For these q, r, we have m = −(−m)n+ pn+ r = (p+m)n+ r = qn+ r.

(b) [‘Uniqueness argument’.] Exercise. (Refer to the proof of Lemma (U). Change ‘Let m,n ∈ N. Suppose n 6= 0.

Suppose q, r, q′, r′ ∈ N’ to ‘Let m,n ∈ Z. Suppose n > 0. Suppose q, r, q′, r′ ∈ Z’. See what happens.)

Corollary (DAZ2). (Division Algorithm for integers.)

Let m,n ∈ Z. Suppose n 6= 0. Then there exist some unique q, r ∈ Z such that m = qn+ r and 0 ≤ r < |n|.

Proof of Corollary (DAZ2). Exercise.

Remark on terminology. In each of Corollary (DAZ1) and Corollary (DAZ2), the numbers q, r are called

the quotient and remainder in the division of m by n.

7. Refer to Theorem (2) in the Handout De Moivre’s Theorem and roots of unity:

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

(a) ωn is an n-th root of unity.

(b) The n-th roots of unity are the n complex numbers of modulus 1, given by 1, ωn, ωn

2, ..., ωn

n−1.

Corollary (DAZ1) is the tacit assumption needed in the argument for this result.

8. Theorem (DIV).

Let m,n ∈ Z. Suppose n 6= 0. m is divisible by n iff the remainder is 0 in the division of m by n.

Proof of Theorem (DIV). Exercise.

Remark. This result provides the connection between the definition of divisibility and Division Algorithm.

Definition.

Let n ∈ Z.

(a) n is said to be even if n is divisible by 2.

(b) n is said to be odd if n is not divisible by 2.

Theorem (O). (Equivalent formulation of the definition of odd-ness for integers.)

Let n ∈ Z. The statements (†), (‡) are logically equivalent:

(†) n is odd.

(‡) There exists some k ∈ Z such that n = 2k + 1.

Proof of Theorem (O). Exercise.
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