MATH1050 Division Algorithm

1. Definition.
Let S be a subset of R. Let A € S. X is said to be a least element of S if (A < x whenever x € S).

Well-Ordering Principle for integers (WOPI).

Let S be a non-empty subset of N. S has a least element.
Remark. A more formal way to express ‘S has a least element’ is: there exists some A € S such that X is a
least element of S.

2. Theorem (DAN). (Division Algorithm for natural numbers.)
Let m,n € N. Suppose n # 0. Then there exist some unique q,r € N such that m =qn +r and 0 < r < n.
Remark on terminology. In the statement of Theorem (DAN), the numbers ¢, r are called the quotient and
remainder in the division of m by n.

Proof of Theorem (DAN). The result follows from Lemma (E) and Lemma (U). The argument for Lemma
(E) relies on the Well-Ordering Principle for integers.

3. Lemma (E). (Existence part of Theorem (DAN).)
Let m,n € N. Suppose n # 0. Then there exist some g, € N such that m = qn +r and 0 < r < n.
Lemma (U). (Uniqueness part of Theorem (DAN).)

Let m,n € N. Suppose n # 0. Let q,7,q',7" € N. Suppose m = qn +r and 0 <r <n and m = ¢'n+r’ and
0<7r'<n. Thenq=q andr =r'.

4. Proof of Lemma (E).
Let m,n € N. Suppose n # 0.

[Idea. Remember that we want to name appropriate natural numbers g, r satisfying both m = ¢gn + r and

0 < r < n. We put these two conditions in the form 0 < m — gn = r < n. This suggests we look for a
candidate for r from the list of natural numbers

m—0-n,m—1-nm-—2n,m—3n,---

This is a descending arithmetic progression. Does it terminate or not? It has to terminate; otherwise, it
would ‘descend into the negative integers’. A candidate for r is ‘located’” where this list terminates. (Why?)
With this candidate for » we also obtain a candidate for q. Now we are ready to proceed with the formal
argument.]

(Ea) Define S = {x € N : There exists some k € N such that z = m — kn}.
By definition, S is a subset of N.
Note that m =m — 0-n and 0 € N. Therefore m € S. S # 0.
Hence S is a non-empty subset of N.
By the Well-ordering Principle for Integers, S has a least element, which we denote by r.
(Eb) By definition, since r € S, we have r € N.
Also, since r € S, there exists some ¢ € N such that » = m — ¢n.
So m = gn + r for these ¢,r € N.
(Ec) By definition, » > 0. We verify that r < n:
e Suppose it were true that r > n. Write 7 = r — n. We would have # € N and 7 < r.
Note that 7 =r —n=m — (¢+ 1)n.
Since ¢ € N, we would have ¢ +1 € N.
Then 7 € S by the definition of S.

But 7 is a least element of S. Contradiction arises.
Hence r < n in the first place.

The result follows.



5. Proof of Lemma (U).
Let m,n € N. Suppose n # 0. Suppose q,7,¢', 7" € N.
Suppose m=qgn+rand 0 <r<nand m=q¢n+7" and 0 <71’ < n.
We have qn + r = ¢'n + r'. Therefore |¢ — ¢'In = |r' —r|.
Since0<r<n—land0<r" <n-—1,wehave 0 < |g—¢'|In=|r—7|<n-—1.
Since |¢ — ¢’| € N, we have |¢ — ¢'ln =0or |¢ — ¢'|n > n.

/

Since |¢ — ¢'|n <n —1 < n, we have |¢ — ¢'|n = 0. Therefore ¢ = ¢’. Also, r =7'.

6. Corollary (DAZ1). (Division Algorithm for integers.)
Let m,n € Z. Suppose n > 0. Then there exist some unique q,7 € Z such that m =qn+r and 0 < r < n.
Proof of Corollary (DAZ1).

(a) [‘Existence argument’.] Let m,n € Z. Suppose n > 0. Note that m > 0 or m < 0.

e (Case 1). Suppose m > 0. Then, by Theorem (DAN), there exists some ¢, € N such that m = gn + r
and 0 <r <n.

e (Case 2). Suppose m < 0. [Idea: Is there an integer in the list m+0-n,m+1-n,m+ 2n,m + 3n, - - -
which is non-negative? If yes, can we apply Theorem (DAN) to this non-negative integer?)
Note that —m € N. Since n > 0, we have m + (—m)n = (—m)(n — 1) € N.
By Theorem (DAN), there exist some p,r € N such that m + (—m)n =pn+rand 0 <r < n.
Now define ¢ = p + m. Since p,m € Z, we have q € Z.
For these ¢,r, we have m = —(—m)n+pn+r=(p+m)n+r =qn+r.

(b) [‘Uniqueness argument’.] Exercise. (Refer to the proof of Lemma (U). Change ‘Let m,n € N. Suppose n # 0.
Suppose q,r,q',r" € N’ to ‘Let m,n € Z. Suppose n > 0. Suppose q,7,q¢', 7" € Z’. See what happens.)
Corollary (DAZ2). (Division Algorithm for integers.)
Let m,n € Z. Suppose n # 0. Then there exist some unique q,r € Z such that m = qn+r and 0 < r < |n|.
Proof of Corollary (DAZ2). Exercise.

Remark on terminology. In each of Corollary (DAZ1) and Corollary (DAZ2), the numbers ¢, r are called
the quotient and remainder in the division of m by n.

7. Refer to Theorem (2) in the Handout De Moivre’s Theorem and roots of unity:

2
Let n be a positive integer. Write 6,, = =" Define wp, = cos(0y,) + isin(6,).
n

(a) wy, is an n-th root of unity.

(b) The n-th roots of unity are the n complex numbers of modulus 1, given by 1, w,, w,?, ..., w," L.

Corollary (DAZ1) is the tacit assumption needed in the argument for this result.

8. Theorem (DIV).
Let m,n € Z. Suppose n # 0. m is divisible by n iff the remainder is 0 in the division of m by n.
Proof of Theorem (DIV). Exercise.
Remark. This result provides the connection between the definition of divisibility and Division Algorithm.
Definition.

Letne Z.

(a) n is said to be even if n is divisible by 2.

(b) n is said to be odd if n is not divisible by 2.

Theorem (O). (Equivalent formulation of the definition of odd-ness for integers.)

Let n € Z. The statements (1), (1) are logically equivalent:

(t) n is odd.
(1) There exists some k € Z such that n =2k + 1.

Proof of Theorem (O). Exercise.



