1. Definition.
Let S be a subset of R.
Let A€ S.

)\ is said to be a least element of S if

(A < x whenever x € S). -

Well-Ordering Principle for integers (WOPI).
Let S be a non-empty subset of N.

S has a least element.

Remark. A more formal way to express ‘S has a least element’ is: there exists
some \ € S such that )\ is a least element of S.



2. Theorem (DAN). (Division Algorithm for natural numbers.)
Let m,n € N. Suppose n # 0.

Then there exist some unique q, T c N such that m = qn+1r and 0 <7 < n.

Remark on terminology. In the statement of Theorem (DAN), the numbers g, r
are called the quotient and remainder in the division of m by n.

Proof of Theorem (DAN). The result follows from Lemma (E) and Lemma (U).
The argument for Lemma (E) relies on the Well-Ordering Principle for integers.

3. Lemma (E). (Existence part of Theorem (DAN).)
Let m,n € N. Suppose n # 0.

Then there exist some q,r € N such that m = gqn + 7 and 0 <r<n.

Lemma (U). (Uniqueness part of Theorem (DAN).)

Let m,n € N. Suppose n # 0.

Let q,7,q¢,r" € N.

Suppose m = gn+7r and 0 <7 <n andm = ¢n+r" and 0 <1’ <n.
Then q=¢ and r =1
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4. Proof of Lemma (E).
Let m,n € N. Suppose n # 0.

[Idea for the argument.

Remember that we want to name appropriate natural numbers g, r satisfying both
m=qn-+rand 0 <r <n.

We put these two conditions in the form 0 < m —gn =7 <n.

This suggests we look for a candidate for r from the list of natural numbers

m—0-n,m—1-n,m—2n,m-—3n,---

This is a descending arithmetic progression. Does it terminate or not?

It has to terminate; otherwise, it would ‘descend into the negative integers’.

A candidate for 7 is ‘located’ where this list terminates. (Why?)

With this candidate for r we also obtain a candidate for ¢. Now we are ready to

proceed with the formal argument ]



Proof of Lemma (E).
Let m,n € N. Suppose n # 0.

(Ea) Define S = {x € N : There exists some k € N such that z =m — kn}.
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5. Proof of Lemma (U).
Let m,n € N. Suppose n # 0.
Suppose ¢, 7, ¢, 7" € N. |
Suppose m = gn+rand 0 <r <nand m=¢n+7" and 0 <7’ < n.
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Corollary (DAZ1). (Division Algorithm for integers.)
Let m,n € Z. Suppose n > 0.

Then there exist some unique q,r € Z such that m = qn +r and 0 <r <n.

Corollary (DAZ2). (Division Algorithm for integers.)
Let m,n € Z. Suppose n # 0.

Then there exist some unique q,r € Z such that m = gn+r and 0 <7 < |n].

Proof of Corollary (DAZ2). Exercise.

Remark on terminology. In each of Corollary (DAZ1) and Corollary (DAZ2), the
numbers ¢, 7 are called the quotient and remainder in the division of m by n.



6. Corollary (DAZ1). (Division Algorithm for integers.)
Let m,n € Z. Suppose n > 0.

Then there exist some unique q,r € Z such that m = gn+r and 0 < r < n.
Proof of Corollary (DAZ1).

(a) [Existence argument’.] Let m,n € Z. Suppose n > 0. Note that m > 0 or m < 0.

e (Case 1). Suppose m > 0. Then, by Theorem (DAN), there exists some ¢, € N
such that m =gn+r and 0 < r <n.
e (Case 2). Suppose m < 0. |Idea: Is there an integer in the list

m+0-n,m+1-nm+2n,m+3n,---

which is non-negative? If yes, can we apply Theorem (DAN) to this non-negative
integer?]
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(b) [‘Uniqueness argument’.] Exercise.



7. Refer to Theorem (2) in the Handout De Moivre’s Theorem and roots of unity:

2T

Let n be a positive integer. Write 6, = —. Define w,, = cos(6,) + isin(f,,).
n

(a) wy, Is an n-th root of unity.

(b) The n-th roots of unity are the n complex numbers of modulus 1, given by 1,

2 n—1
Wn, Wp™y ..y Wp .

Corollary (DAZ1) is the tacit assumption needed in the argument for this result.



8. Theorem (DIV).

Let m,n € Z. Suppose n # 0. m is divisible by n iff the remainder is 0 In the
division of m by n.

Proof of Theorem (DIV). Exercise.

Remark.  This result provides the connection between the definition of divisibility
and Division Algorithm.

Definition.

Letn € Z.

(a) n is said to be even if n is divisible by 2.
(b) n is said to be odd if n is not divisible by 2.

Theorem (O). (Equivalent formulation of the definition of odd-ness for
integers.)

Let n € Z. The statements (1), (1) are logically equivalent:

(1) n is odd.
() There exists some k € Z such that n =2k + 1.

Proof of Theorem (O). Exercise.



