MATH1050 Existence, uniqueness, and existence-and-uniqueness

1. Existence versus uniqueness.

A statement of the form

$$
(\exists x)Q(x),
$$

$$
(\exists x)(\exists y)Q(x,y),
$$

$$
\dots,
$$

$$
(\exists x)(\exists y)\cdots Q(x,y,\cdots)
$$

is called an existence statement.

In ordinary language, we write: 'there is at least one x for which $Q(x)$ is true', 'there is at least a pair of x, y for which $Q(x, y)$ is true', et cetera.

A statement of the form

$$
(\forall x)(\forall x')[(Q(x) \land Q(x')) \rightarrow (x = x')],(\forall x)(\forall y)(\forall x')(\forall y')[(Q(x, y) \land Q(x', y')) \rightarrow [(x = x') \land (y = y')]]',...,(\forall x)(\forall y)(\forall x')(\forall y') \cdots [(Q(x, y, \dots) \land Q(x', y', \dots)) \rightarrow [(x = x') \land (y = y') \land \dots]]'
$$

is called a uniqueness statement.

In ordinary language, we write: 'there is at most one x for which $Q(x)$ is true', 'there is at most a pair of x, y for which $Q(x, y)$ is true', et cetera.

Remark. The two statements

- 'there is at least one x for which $Q(x)$ is true',
- 'there is at most one x for which $Q(x)$ is true',

may look 'similar' at first sight (differing from each other by only one word), but they are very different, as we can see from their respective 'formal formulations'

- Θ ' $(\exists x)Q(x)$ ',
- $(\forall x)(\forall x')[(Q(x) \land Q(x')) \rightarrow (x = x')]'.$

Given a 'concrete' $Q(x)$, it can happen that both are true or that both are false, or that one is true and the other is false. Neither implies the other.

2. Examples of existence statements.

The parts of the statements below highlighted in boldface constitute 'existence statements'.

(a) 'Defining condition' in the definition of divisibility.

Let $m, n \in \mathbb{Z}$. m is said to be divisible by n if there exists some $k \in \mathbb{Z}$ such that $m = kn$. Remark.

- (A) What does 'there exists some $k \in \mathbb{N}$ such that $m = kn$ ' say, really?
	- (1) The already present m, n 'generates' this k, whose exact value depends on the values of m, n .
	- (2) $k \in \mathbb{Z}$.
	- (3) m, n, k are related by $m = kn$.
- (B) When $m = n = 0$, there are more than one such k. But this does not matter.

(b) Mean-Value Theorem.

Let $a, b \in \mathbb{R}$. Suppose $a < b$. Let $f : [a, b] \longrightarrow \mathbb{R}$ be a function. Suppose f is continuous on $[a, b]$ and f is differentiable on (a, b) . Then there exists some $\gamma \in (a, b)$ such that $f(b) - f(a) = (b - a)f'(\gamma)$. Remark.

- (A) What does 'there exists some $\gamma \in (a, b)$ such that $f(b) f(a) = (b a)f'(\gamma)$ ' say, really?
	- (1) The already present a, b, f 'generates' this γ , whose exact value depends on the values of a, b and the 'formula' of f.
	- (2) $\gamma \in (a, b)$.
	- (3) a, b, f, γ are related by $f(b) f(a) = (b a)f'(\gamma)$.
- (B) It can happen that there are more than one such γ . But this does not matter.
- (c) Well-Ordering Principle for integers.

Let S be a non-empty subset of $N. S$ has at least one least element.

(d) Archimedean Principle.

Let $x, u \in (0, +\infty)$. There exists some $N \in \mathbb{N}$ such that $x \leq Nu$.

(e) Least-upper-bound Principle.

Let S be a non-empty subset of $\mathbb R$. Suppose S has an upper bound in $\mathbb R$. Then S has a least upper bound. Remark. In fact, the assumption 'S has an upper bound in R' is also an existence statement.

(f) Let S be a spanning set for the vector space \mathbb{R}^n over \mathbb{R} . Suppose $\mathbf{x} \in \mathbb{R}^n$. Then there exist some k vectors $u_1, u_2, \dots, u_k \in S$, some k real numbers c_1, c_2, \dots, c_k such that $x = c_1u_1 + c_2u_2 + \dots + c_ku_k$.

3. Examples of uniqueness statements.

The parts of the statements below highlighted in boldface constitute 'uniqueness statements'.

- (a) Let S be a subset of \mathbb{R} . S has at most one least element. Remark.
	- (A) What does 'S has at most one least element' say, really?
		- If λ , λ' are two least elements of S, then $\lambda = \lambda'$.
	- (B) What to verify in order to prove that S has at most one least element?
		- Let S be a subset of \mathbb{R} . Let $\lambda, \lambda' \in S$. Suppose each of λ, λ' are least elements of S. Then $\lambda = \lambda'$.
	- (C) Nothing is said on whether or not such a set S has a least element at all. But this does not matter.
- (b) There is at most one line in the Argand plane $\mathbb C$ passing through all of the points $0, 1, i$. Remark.
	- (A) What does 'there is at most one line in the Argand plane $\mathbb C$ passing through all of the points $0, 1, i'$ say, really?
		- If ℓ, ℓ' are lines in the Argand plane \mathbb{C} , each passing through all of $0, 1, i$, then $\ell = \ell'$.
	- (B) What to verify in order to prove that there is at most one line in the Argand plane C passing through all of the points $0, 1, i?$
		- Let ℓ, ℓ' be lines in the Argand plane \mathbb{C} . Suppose ℓ passes through all of $0, 1, i$. Also suppose ℓ' passes through all of $0, 1, i$. Then $\ell = \ell'$.
	- (C) There is, of course, no line passing through all of the points 0, 1, i. But this does not matter.
- (c) Let $A, B, C, D \in \mathbb{R}^2$. There is at most one circle passing through A, B, C, D .
- (d) Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence in \mathbb{R} . $\{a_n\}_{n=0}^{\infty}$ has at most one limit in \mathbb{R} .
- (e) Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ be k linearly independent vectors in \mathbb{R}^n over \mathbb{R} . Suppose $\mathbf{x} \in \mathbb{R}^n$. Then there is at most one collection of k real numbers c_1, c_2, \dots, c_k which satisfies $\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k$.

4. Existence-and-uniqueness.

An existence-and-uniqueness statement is a statement of the form:

• $[(\exists x)(\exists y)\cdots Q(x,y,\cdots)]$ ∧ $\{(\forall x)(\forall y)(\forall x')(\forall y')\cdots[(Q(x,y,\cdots))\wedge Q(x',y',\cdots))\rightarrow [(x=x')\wedge (y=y')\wedge (x',y',\cdots)]\}$ $\cdots]]\}$

Consider the words highlighted in boldface in the statement of the 'Playfair Axiom' in Euclidean geometry below:

• Let ℓ be a line in (the Euclidean plane) \mathbb{R}^2 and p be a point in \mathbb{R}^2 . Suppose p does not lie on ℓ . Then there exists some unique line m in \mathbb{R}^2 such that m does not intersect ℓ and p lies on m.

With ℓ, p being specified, the words 'there exists some unique ...' constitutes an existence-and-uniqueness statement. It is the conjunction of an existence statement and a uniqueness statement, referred to as the existence part and the uniqueness part respectively:

• 'Existence part' (as highlighted in boldface):

(Let ℓ be a line in \mathbb{R}^2 and p be a point in \mathbb{R}^2 . Suppose p does not lie on ℓ .) Then there exists some line m in \mathbb{R}^2 such that m does not intersect ℓ and p lies on m.

• 'Uniqueness part' (as highlighted in boldface):

(Let ℓ be a line in \mathbb{R}^2 and p be a point in \mathbb{R}^2 . Suppose p does not lie on ℓ .) Let m, m' be lines in \mathbb{R}^2 . Suppose each of m, m' does not intersect ℓ and p lies on each of m, m' . Then $m = m'$.

The respective notions of existence and uniqueness are independent. An existence-and-uniqueness statement is true exactly when its 'existence part' is true and its 'uniqueness part' is true. Hence, to prove a statement, we should give the arguments for its 'existence part' and its 'uniqueness part' separately.

5. Examples of existence-and-uniqueness statements.

The parts of the statements below highlighted in boldface constitute 'existence-and-uniqueness statements'.

(a) Theorem (DAN).

Let $m, n \in \mathbb{N}$. Suppose $n \neq 0$. Then there exist some unique $q, r \in \mathbb{N}$ such that $m = qn + r$ and $0 \leq r < n$.

• 'Existence part'.

Let $m, n \in \mathbb{N}$. Suppose $n \neq 0$. Then there exist some $q, r \in \mathbb{N}$ such that $m = qn + r$ and $0 \leq r \leq n$. • 'Uniqueness part'.

Let $m, n \in \mathbb{N}$. Suppose $n \neq 0$. Suppose q, r, q', r' are natural numbers satisfying $m = qn + r$, $m = q'n + r'$ and $0 \le r < n$, $0 \le r' < n$. Then $q = q'$ and $r = r'$.

- (b) Let p, q be distinct points in \mathbb{R}^2 . There exists some unique line ℓ in \mathbb{R}^2 such that p, q lie on ℓ .
	- 'Existence part'.

Let p, q be distinct points in \mathbb{R}^2 . There exist some line ℓ in \mathbb{R}^2 such that p, q lie on ℓ .

• 'Uniqueness part'.

Let p, q be distinct points in \mathbb{R}^2 . Suppose ℓ, ℓ' are lines in \mathbb{R}^2 . Suppose both of p, q lie on each of ℓ, ℓ' . Then $\ell = \ell'$.

- (c) Let ℓ be a line in \mathbb{R}^2 and p be a point in \mathbb{R}^2 . Suppose p does not lie on ℓ . Then there exists some unique line n in \mathbb{R}^2 such that n is perpendicular to ℓ and p lies on n.
	- 'Existence part'.

Let ℓ be a line in \mathbb{R}^2 and p be a point in \mathbb{R}^2 . Suppose p does not lie on ℓ . Then there exists some line n in \mathbb{R}^2 such that n is perpendicular to ℓ and p lies on n.

• 'Uniqueness part'.

Let ℓ be a line in \mathbb{R}^2 and p be a point in \mathbb{R}^2 . Suppose p does not lie on ℓ . Suppose n, n' are lines in \mathbb{R}^2 , each being perpendicular to ℓ and containing p. Then $n = n'$.

- (d) Let A be an $n \times n$ -matrix with real entries, and $\mathbf{b} \in \mathbb{R}^n$. Suppose $\det(A) \neq 0$. Then the equation $A\mathbf{x} = \mathbf{b}$ (with unknown vector x in \mathbb{R}^n) has a unique solution in \mathbb{R}^n .
	- 'Existence part'.

Let A be an $n \times n$ -matrix with real entries, and $\mathbf{b} \in \mathbb{R}^n$. Suppose $\det(A) \neq 0$. Then the equation $A\mathbf{x} = \mathbf{b}$ has a solution in \mathbb{R}^n .

• 'Uniqueness part'.

Let A be an $n \times n$ -matrix with real entries, and $\mathbf{b} \in \mathbb{R}^n$. Suppose $\det(A) \neq 0$. Suppose u, v are both solutions of the equation $Ax = b$ in \mathbb{R}^n . Then $u = v$.

- (e) Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be n vectors which form a base for the vector space \mathbb{R}^n over \mathbb{R} . Suppose $\mathbf{x} \in \mathbb{R}^n$. Then there exist some unique $c_1, c_2, \dots, c_n \in \mathbb{R}$ such that $\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_n \mathbf{u}_n$.
	- 'Existence part'.

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be n vectors which form a base for the vector space \mathbb{R}^n over \mathbb{R} . Suppose $\mathbf{x} \in \mathbb{R}^n$. Then there exist some $c_1, c_2, \dots, c_n \in \mathbb{R}$ such that $\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_n \mathbf{u}_n$.

• 'Uniqueness part'.

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be n vectors which form a base for the vector space \mathbb{R}^n over \mathbb{R} . Suppose $\mathbf{x} \in \mathbb{R}^n$. Suppose $c_1, c_2, \cdots, c_n, c'_1, c'_2, \cdots, c'_n \in \mathbb{R}$. Suppose $\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_n \mathbf{u}_n$. Also suppose $\mathbf{x} = c'_1 \mathbf{u}_1 + c'_2 \mathbf{u}_2 + \cdots + c'_n \mathbf{u}_n$. Then $c_1 = c'_1, c_2 = c'_2, ..., c_n = c'_n$.

- (f) Let $a, b, x_0, y_0 \in \mathbb{R}$. Suppose $a < x_0 < b$. Let $f : (a, b) \longrightarrow \mathbb{R}$ be a function. Suppose f is continuous on (a, b) . Then there exists some unique continuously differentiable function $F : (a, b) \longrightarrow \mathbb{R}$ such that $F(x_0) = y_0$ and for any $x \in (a, b)$, $F'(x) = f(x)$.
	- 'Existence part'.

Let $a, b, x_0, y_0 \in \mathbb{R}$. Suppose $a < x_0 < b$. Let $f : (a, b) \longrightarrow \mathbb{R}$ be a function. Suppose f is continuous on (a, b) . Then there exists some continuously differentiable function $F : (a, b) \longrightarrow \mathbb{R}$ such that $F(x_0) = y_0$ and for any $x \in (a, b)$, $F'(x) = f(x)$.

• 'Uniqueness part'.

Let $a, b, x_0, y_0 \in \mathbb{R}$. Suppose $a < x_0 < b$. Let $f : (a, b) \longrightarrow \mathbb{R}$ be a function. Suppose f is continuous on (a, b) . Suppose $F, G : (a, b) \longrightarrow \mathbb{R}$ are continuously differentiable functions. Suppose $F(x_0) = y_0$ and $G(x_0) = y_0$. Suppose that for any $x \in (a, b)$, $F'(x) = f(x)$. Suppose that for any $x \in (a, b), G'(x) = f(x)$. Then F and G are the same function on (a, b) .