1. Statements with many quantifiers.

When we carefully analyse the logical structure of a mathematical statement, say, S, we will most likely find that S is of the form

$$(\mathfrak{q}_x x)((\mathfrak{q}_y y)(\cdots((\mathfrak{q}_z z)((\mathfrak{q}_w w)P(x,y,\cdots,z,w)))\cdots))$$

in which:

- $P(x, y, \dots, z, w)$ is a predicate with variables x, y, \dots, z, w , and
- each of $\mathfrak{q}_x, \mathfrak{q}_y, ..., \mathfrak{q}_z, \mathfrak{q}_w$ stands for the universal quantifier \forall or the existential quantifier \exists .

Starting with the predicate $P(x, y, \dots, z, w)$, we obtain successive predicates with fewer and fewer variables, arriving at the statement S in the end, by 'closing the variables w, z, \dots, y, x with quantifiers' one by one:

- $P(x, y, \cdots, z, w),$
- $(\mathfrak{q}_w w) P(x, y, \cdots, z, w),$
- $(\mathfrak{q}_z z)((\mathfrak{q}_w w)P(x, y, \cdots, z, w)),$
- ...
- $(\mathfrak{q}_y y)(\cdots((\mathfrak{q}_z z)((\mathfrak{q}_w w)P(x, y, \cdots, z, w)))\cdots),$
- $(\mathfrak{q}_x x)((\mathfrak{q}_y y)(\cdots((\mathfrak{q}_z z)((\mathfrak{q}_w w)P(x,y,\cdots,z,w)))\cdots)).$

2. Statements starting with two quantifiers.

From a predicate Q(x, y) with two variables x, y, eight statements can be formed:

(1)	$(\forall x)[(\forall y)Q(x,y)].$	(5)	$(\forall x)[(\exists y)Q(x,y)].$
(2)	$(\forall y)[(\forall x)Q(x,y)].$	(6)	$(\exists y)[(\forall x)Q(x,y)].$
(3)	$(\exists x)[(\exists y)Q(x,y)].$	(7)	$(\exists x)[(\forall y)Q(x,y)].$
(4)	$(\exists y)[(\exists x)Q(x,y)].$	(8)	$(\forall y)[(\exists x)Q(x,y)].$

We accept (1), (2) to be logically equivalent.

Examples of (1), (2).

- (a) For any x > 0, for any y > 0, x + y > 0.
- (b) Let $x, y \in \mathbb{Z}$. Suppose x is divisible by y and y is divisible by x. Then |x| = |y|.

We accept (3), (4) to be logically equivalent (in most situations).

Examples of (3), (4).

- (a) There exist some irrational numbers x, y such that x + y is a rational number.
- (b) There exist some integers q, r such that 10000 = 333q + r and $0 \le r \le 332$.

Care must be taken with (5), (6), (7), (8).

3. Statements starting with one universal quantifier and one existential quantifier.

Non-mathematical examples. Compare and contrast the statements in each pair $(b), (\sharp)$ below:

- (a) (b) Every student gets A in some MATH course.(No big deal; everyone has his/her own 'lucky' course.)
 - (#) In some MATH course, every student gets A.(Then you will rush to enrole in such a course.)
- (b) (b) In every MATH course, some student gets A.(No big deal; you don't expect us to be excessively harsh.)
 - (\$) Some student gets A in every MATH course.(Then you will look for 'source' from him/her.)

Now replace 'A' by 'F', and compare and contrast the resultant statements.

- (a') (b) Every student gets F in some MATH course.(Then getting F is nothing, but you still hope it happens to you no more than once.)
 - (\$) In some MATH course, every student gets F.(Then you will hope this is not a compulsory course.)
- (b') (b) In every MATH course, some student gets F.(Then you will work hard and pray you are not those hopefully very few ones.)
 - (\$) Some student gets F in every MATH course.(You will probably not find him/her as a classmate next year.)

When interpreting a statement with two or more quantifiers, we have to be careful with the 'relative positioning' of the quantifiers.

Mathematical Examples. Compare and contrast the statements in each pair (b), (\sharp) below:

- (c) (b) For any $x \in \mathbb{R}$, there exists some $y \in \mathbb{R}$ such that x < y. (\sharp) There exists some $y \in \mathbb{R}$ such that for any $x \in \mathbb{R}$, x < y.
 - (\flat) is true and (\sharp) is false.
- (d) (b) For any triangle x, there exists some circle y such that y passes through all three vertices of x.
 (\$\$) There exists some circle y such that for any triangle x, y passes through all three vertices of x.
 (b) is true and (\$\$) is false.
- (e) (b) For any x ∈ Z, there exists some y ∈ Z such that x + y = x.
 (\$) There exists some y ∈ Z such that for any x ∈ Z, x + y = x. Both (b), (\$) are true. ((\$) is useful, (b) useless.)
- (f) (b) (Let S be a non-empty subset of N.) For any x ∈ S, there exists some y ∈ S such that y ≤ x.
 (#) (Let S be a non-empty subset of N.) There exists some y ∈ S such that for any x ∈ S, y ≤ x. Both (b), (#) are true. ((#) is useful, (b) useless.)

In each of these examples, we have a pair of statements of the form:

 $(\flat) \quad (\forall x)[(\exists y)Q(x,y)]. \tag{$(\exists y)[(\forall x)Q(x,y)]$}.$

They are resultants of different 'sequences' in 'closing variables with quantifiers':

- How to obtain (b)? First Q(x, y); next $(\exists y)Q(x, y)$; finally $(\forall x)[(\exists y)Q(x, y)]$.
- How to obtain (\sharp)? First Q(x, y); next $(\forall x)Q(x, y)$; finally $(\exists y)[(\forall x)Q(x, y)]$

The convention for (b) to be understood is:

• For any object x, there exists some object y_x , depending on what x is (as indicated by the subscript 'x' in 'y'') such that $Q(x, y_x)$ is a true statement.

The convention for (\sharp) to be understood is:

• There exists some object y such that for any object x, Q(x, y) is a true statement.

If (for some very good reason,) you need start with 'for any ojbect x' in a 'wordy' formulation of (\sharp) , you must write in this way:

• For any object x, there exists some object y independent of the choice of x such that Q(x, y) is a true statement.

Warning. Always remember these points when you read or write a statement involving both the universal quantifier and the existential quantifier:

- (a) The statements (b), (\sharp) are different.
 - (\$\$) implies (\$\$): if (\$\$) is true then (\$\$) is true.
 - However, (b) does not imply (\sharp) : when (b) is true, (\sharp) may be true or false.

(b) The 'relative positioning' of ' $\forall x$ ', ' $\exists y$ ' cannot be interchanged.

• In (b), y 'depends' on x.

• In (\sharp) , y does not 'depend' on x.

- (c) If you are in doubt, recall some examples which help you distinguish the meanings of (b) and (♯). For example, refer to 'non-mathematical examples'.
- (d) Ask yourself whether what you write is the same as what you will be understood. For instance, if what you mean is

'for any $x \in \mathbb{R}$, there exists some $y \in \mathbb{R}$ such that x < y',

do not write the statement as

'for any $x \in \mathbb{R}$, x < y for some $y \in \mathbb{R}$ ',

or worse,

'there exists some $y \in \mathbb{R}$ such that x < y for any $x \in \mathbb{R}$ '.

4. Negations of statements starting with two quantifiers.

We apply the rules for negating statements with one quantifier repeatedly for statements with two quantifiers:

- (a) The negation of $(\forall x)[(\exists y)Q(x,y)]$ is $(\exists x)[(\forall y)(\sim Q(x,y))]$.
- (b) The negation of $(\exists y)[(\forall x)Q(x,y)]$ is $(\forall y)[(\exists x)(\sim Q(x,y))]$.
- (c) The negation of $(\forall x)[(\forall y)Q(x,y)]$ is $(\exists x)[(\exists y)(\sim Q(x,y))]$.
- (d) The negation of $(\exists x)[(\exists y)Q(x,y)]$ is $(\forall x)[(\forall y)(\sim Q(x,y))]$.

Examples. How to write down the negations of the statements below?

(a) There exists some $y \in S$ such that for any $x \in T$, x < y.

Convert the statement to be negated into a 'chain of symbols':

• $(\exists y \in S)[(\forall x \in T)(x < y)].$

Now repeatedly apply the rules for negating statements with one quantifier:

• $\sim \{(\exists y \in S) [(\forall x \in T)(x < y)]\}$ is equivalent to $(\forall y \in S) \{\sim [(\forall x \in T)(x < y)]\}$. The latter is logically equivalent to $(\forall y \in S) \{(\exists x \in T) [\sim (x < y)]\}$. The latter is logically equivalent to $(\forall y \in S) [(\exists x \in T)(x \ge y)]$.

Now convert this last 'chain of symbols' into words:

• 'For any $y \in S$, there exists some $x \in T$ such that $x \ge y$.'

This is the required negation of the given statement.

(b) For any $a, b \in \mathbb{Z}$, a + b is divisible by 2.

Negation: There exist some $a, b \in \mathbb{Z}$ such that a + b is not divisible by 2.

- (c) For any $z \in \mathbb{C}$, there exists some $w \in \mathbb{R}$ such that $\operatorname{Re}(z+w) = \operatorname{Im}(z+w)$. Negation: There exists some $z \in \mathbb{C}$ such that for any $w \in \mathbb{R}$, $\operatorname{Re}(z+w) \neq \operatorname{Im}(z+w)$.
- (d) There exist some $s, t \in \mathbb{Q}$ such that $(s + t \in \mathbb{Z} \text{ and } st \notin \mathbb{Z})$. Negation: For any $s, t \in \mathbb{Q}$, $(s + t \notin \mathbb{Z} \text{ or } st \in \mathbb{Z})$.

5. Statements with many quantifiers.

The principles in the discussion above can be extended to statements with three or more quantifiers.

Questions. How to read and/or write them? How to negate them?

6. Examples from linear algebra.

(a) Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, and S be a subset of \mathbb{R}^n .

How to formulate 'every vector in S is a linear combination of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ over \mathbb{R} '?

- Formulation in words: For any $\mathbf{x} \in S$, there exist some $a, b, c \in \mathbb{R}$ such that $\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$.
- Formulation in symbols: $(\forall \mathbf{x} \in S)[(\exists a \in \mathbb{R})(\exists b \in \mathbb{R})(\exists c \in \mathbb{R})(\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w})].$

This statement is of the form $(\forall \mathbf{x})((\exists a)(\exists b)(\exists c)Q(\mathbf{x}, a, b, c)).$

How to formulate 'not every vector in S is a linear combination of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ over \mathbb{R} '?

- Formulation in symbols: $(\exists \mathbf{x} \in S)[(\forall a \in \mathbb{R})(\forall b \in \mathbb{R})(\forall c \in \mathbb{R})(\mathbf{x} \neq a\mathbf{u} + b\mathbf{v} + c\mathbf{w})].$
- Formulation in words: There exists some $\mathbf{x} \in S$ such that for any $a, b, c \in \mathbb{R}$, $\mathbf{x} \neq a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$.
- (b) Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.

How to formulate ' $\mathbf{u},\mathbf{v},\mathbf{w}$ are linearly independent over $\mathbb{R}^{\prime}?$

- Formulation in words: For any $a, b, c \in \mathbb{R}$, if $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$ then (a = 0 and b = 0 and c = 0).
- Formulation in symbols: $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R})(\forall c \in \mathbb{R})\{(a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}) \longrightarrow [(a = 0) \land (b = 0) \land (c = 0)]\}.$

This statement is of the form $(\forall a)(\forall b)(\forall c)Q(a, b, c)$.

How to formulate ' $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly dependent over \mathbb{R} '?

- Formulation in symbols: $(\exists a \in \mathbb{R})(\exists b \in \mathbb{R})(\exists c \in \mathbb{R})\{(a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}) \land [(a \neq 0) \lor (b \neq 0) \lor (c \neq 0)]\}.$
- Formulation in words: There exist some $a, b, c \in \mathbb{R}$ such that $(a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0} \text{ and } a, b, c \text{ are not all } \mathbf{0})$.

7. Examples from calculus of one variable.

(a) Let f be a real-valued function on \mathbb{R} , and $c \in \mathbb{R}$.

How to formulate 'f attains a relative minimum at c'?

- Formulation in words: There exists some $\delta > 0$ such that for any $x \in \mathbb{R}$, (if $|x - c| < \delta$ then $f(x) \ge f(c)$).
- Formulation in symbols: $(\exists \delta > 0)\{(\forall x \in \mathbb{R})[(|x - c| < 0) \longrightarrow (f(x) \ge f(c))]\}.$

This statement is of the form $(\exists \delta)((\forall x)Q(\delta, x))$.

How to formulate 'f does not attain a relative minimum at c'?

• Formulation in symbols: $(\forall \delta > 0) \{ (\exists x \in \mathbb{R}) [(|x - c| < 0) \land (f(x) < f(c))] \}.$

• Formulation in words: For any $\delta > 0$, there exists some $x \in \mathbb{R}$ such that $(|x - c| < \delta \text{ and } f(x) < f(c))$.

(b) Let f be a real-valued function on \mathbb{R} , and $c \in \mathbb{R}$.

How to formulate 'f is continuous at c'?

- Formulation in words: For any $\varepsilon > 0$, there exists some $\delta > 0$ such that for any $x \in \mathbb{R}$, $(if |x - c| < \delta then |f(x) - f(c)| < \varepsilon)$.
- Formulation in symbols: $(\forall \varepsilon > 0)\{(\exists \delta > 0)[(\forall x \in \mathbb{R})((|x - c| < 0) \longrightarrow (|f(x) - f(c)| < \varepsilon))]\}.$

This statement is of the form $(\forall \epsilon)[(\exists \delta)((\forall x)Q(\epsilon, \delta, x))].$

How to formulate 'f is not continuous at c'?

- Formulation in symbols: $(\exists \varepsilon > 0)\{(\forall \delta > 0)[(\exists x \in \mathbb{R})((|x - c| < 0) \land (|f(x) - f(c)| \ge \varepsilon))]\}.$
- Formulation in words: There exists some $\varepsilon > 0$ such that for any $\delta > 0$, there exists some $x \in \mathbb{R}$ such that $(|x - c| < \delta$ and $|f(x) - f(c)| \ge \varepsilon$).

Now you see why mathematical analysis is hard: even very basic notions involve a heavy presence of quantifiers.