1. Predicates.

A predicate with variables z,y, z, - - - is a statement ‘modulo’ the ambiguity of
possibly one or several variables z,y, z, - - - . In general, it may fail to be a statement.
However, provided we have specified z,y, z,- -+ in such a predicate, it becomes a

statement, for which it makes sense to say it is true or false.

Statements are predicates with no variable.

Given predicates P(z,---), Q(x,---), ..., we can make use of the ‘logical connectives’

to form ‘compound’ predicates i e % 8
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2. Universal quantifier, as the ‘generalization’ of ‘and’.

Non-mathematical example.

e ‘Lvery dog has a tail.’
e ‘For any dog x, x has a tail.’

e ‘For any object z, (if z is a dog then z has a tail).’
These three sentences mean the same thing. Heuristically, what we mean 1s:

‘Dog a has a tail, and Dog [ has a tail, and Dog 7y has a tail, and ..., and Dog w
has a tail, and ...".

We will very soon be tired with so many ‘and’; hence we say
‘every dog has a tail’.

The words ‘for any’, ‘for all’, ‘every’, ‘each’; ... indicate the presence of the
universal quantifier. | |



Examples of statements (starting) with one universal quantifier.

(a) The square of each real number is non-negative.

Formal formulation.

e For any z € R, 2% > 0.

Very formal formulation.

e For any object z, if € IR then z* > 0.
(b) Every triangle is equilateral.

Formal formulation.
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Very formal formulation.
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(¢) Let p be a positive prime number. /p is irrational.

Formal formulation.
‘—F(W J AT e "FVW vxwm(o/«M T %ue vaW\Lw/ \(r | e, M

Very formal formulatlon
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(d) Suppose A is a non-singular square matrix. Then A has an inverse matrix.
Formal formulation.
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Very formal formulation.
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Statement (starting) with one universal quantifier:

e Statement of the form (Va € S)Q(x).

e Pronunciation: ‘for all £ belonging to S, Q(x)’.
For the purist, 1t 1s:
o ‘(Vz)((z € §) — Q(x)).

S

e Pronunciation: ‘for all z, if  belongs to S then Q(z)

Y



3. Existential quantifier, as the ‘generalization’ of ‘or’.

Non-mathematical example.

e ‘Some dogs have black hair.’

e ‘There is at least one dog with black hair.’

e ‘There is some dog x so that = has black hair.’

e ‘There exists some dog x such that x has black hair.’

e ‘There exists some object x such that (z is a dog and x has black hair).’
These five sentences mean the same thing. Heuristically, what we mean 1s:

‘Dog « has black hair, or Dog f has black hair, or Dog «y has black hair, or ..., or
Dog w has black hair, or ...".

We will very soon be tired with so many ‘or’; hence we say
‘some dog has black hair’.

The words ‘there exist (some)’, ‘there is/are (some)’, ‘for some’, ‘some’,
‘at least one’, ‘there is at least one’ indicate the presence of the existential
quantifier.



Examples of statements (starting) with one existential quantifier.

(a) There is a prime number.

Formal formulation.
e There exists some x© € Z such that x is a prime number.

Very formal formulation.

e There exists some object x such that x € Z and x is a prime number.
(b) Some non-zero integer is divisible by 0.

Formal formulation.
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Very formal formulation. .
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(¢c) Some subset of R which is bounded above in R has a greatest element.
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(d) The equation tan(x) = z with unknown z in IR has at least one non-zero
solution.

Formal formulation.
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Very formal formulation. | _\
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Statement (starting) with one existential quantifier:

e Statement of the form (Fz € S)Q(z).

e Pronunciation: ‘there exists some z belonging to S such that Q(z)’.
For the purist, it is:
o ‘(Az)((x € S) AN Q(z))".
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e Pronuncation: ‘there exists some x such that z belongs to S and Q(x)’.



4. Truth-hood of a statement of the form (Vz)P(z), and verification of
such a statement. |

The statement ‘(Vz)P(z)’ is true exactly when:

no matter which object z is specified, the statement P(x) is a true statement.

Recall that these statements are the same:
(2 € $)Q(), (Va)((z € §) » Q@)

Now we (have to) accept that the statement ‘(Vz € S)Q(x) is true exactly when:

e no matter which object x is specified, if = is an element of S then the
statement Q(x) is a true statement.

To verify the statement ‘(Vz € S)Q(x)’, we proceed as described here:
CVx) ((xeS) —> Q)
e Start with: ‘Pick any object z.*Suppose z € S

Then argue that for this fixed (but initially arbitrarily chosen) x, the statement

Q(z) is true. «




Examples. How do we begin the argument for the underlined conclusions in the

statements below?

(a) Suppose C = {z | x = n* for somen € N}, D = {x | x = n? for somen € N}.
Then C' C D. |
We recall ‘C C D’ reads:
o ‘For any object =, if x € €' then € D!

So we proceed as: l v Ar&w\&»f —\

o ... Pick any z. M. By the definition of C, blah-blah-blah. ..
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(b) Suppose C = {¢ € € : |[Re(¢)] + [Im(C)] < 1}, D={CeC:|¢| <1} Then
ccbh.
We recall ‘C C D’ reads:

o ‘For any object C, if = 6 Cthenze D' _——

So we proceed as: =y T
. Pick any C. Suppose xz e C. @ the definition of C, blah-blah- blah | Then
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5. Truth-hood of a statement of the form (Jx)P(x), and verification of
such a statement. |

The statement ‘(3z) P(x)’ is true exactly when:

one object o can be specified to make the statement P (x¢) a true statement.

Recall that the statements below are the same:
‘(Fr € S)Q(z), ‘(Bx)((z € S) A Q(x)).

We accept that the statement ‘(3z € S)Q(z)’ is true exactly when:

e one object o can be specified which is an element of S and which makes the
statement QQ(xg) is a true statement.



To verify the statement ‘(3z € S)Q(z)’, we proceed as described here:
(%) ((x€$) A Q)

e Name some appropriate ‘candid@ | |
Argue that zg € S.<——

Also argue that for this (specifically chosen) z, the statement Q(zo) is true.

Such a ‘candidate’ zp may be found with whatever means.

What is crucial is to:

verify that zg € S and Q(zo) is true.

Tn some situations, it takes no effort to name an appropriate ‘candidate’.

In some situations, before naming an appropriate ‘candidate’, we do some rough-
work to search for it. The nature of the roughwork varies from one problem to
another.

When you have no idea where to look for an appropriate ‘candidate’, this question
may help you:  Swprpne x€S oud 8o hdds
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Examples. How do we argue for the underlined conclusions of the statements below?

(a) Let u € Z. u is divisible by w.

Recall ‘u is divisible by u’ reads:
e ‘There exists some k such that k € Z and u = ku.’

A ‘candidate’ for k£ which we can spot immediately is 1.

Hence we proceed as:

.. 1eZ. Also, u =1-u. Hence u is divisible by wu.

(b) Let w,v,w € Z. Suppose u is divisible by v and v is divisible by w. Then
u Is divisible by w.




Examples. How do we argue for the underlined conclusions of the statements below?

(a) Let u € Z. w is divisible by wu.

(b) Let w,v,w € Z. Suppose u is divisible by v and v is divisible by w. Then
u is divisible by w.

Recall ‘u is divisible by w’ reads:
e ‘There exists some k such that £ € Z and v = kw.’

We want to name an appropriate ‘candidate’ k which, we hope, is an element of
Z and satisfies u = kw.

Roughwork. We ask:
e What can be said about k if kK € Z and u = kw?

Then we ‘unwrap’ the assumption ‘u is divisible by v and v is divisible by w’ to
obtain:

e ‘there exist some g, h € Z such that u = gv and v = hw’.

So we obtain a ‘candidate’ for k, namely, k = gh.

In the formal argument, we proceed as:

e ... There exist some g, h € Z such that v = gv and v = hw. Take k = gh.
Since blah-blah-blah, k € Z. Also, since bleh-bleh-bleh, © = kw. Hence w 1s
divisible by w. |



6. Negation of a statement (starting) with one universal quantifier.

The statement ‘(Vx)P(z)’ is true exactly when:

no matter which object x is specified, the statement P(x) is a true statement.

Therefore the statement (V) P(x)’ is false exactly when i TL" y Linke (m) (@) Ll

one z can be specified to make P(xzg) a false statement.
We accept the statements below to be logically equivalent: /
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Then all the statements below are logically equivalent:
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In particular, ~((Vz € S)Q(z)) and (3z € S)(~Q(z)) are logically equivalent.
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To dis-prove
(Vz)P(z)" (or ‘(Vz € 5)Q(z))
1s the same as to prove
(3y)(~P(y))" (or ‘(Fw € S)(~Q(w))" respectively)

This is the logical foundation of ‘dis-proof by counter-example’.



7. Negation of a statement (starting) with one existential quantifier.

The statement ‘(dx)P(x)’ is true exactly when:

one object o can be specified to make the statement P(xg) a true statement.

Therefore the statement ‘(Jz)P(x)’ is false exactly when: —hs (o
no matter which object x is specified, the statement (x) is a false statement. @E/ )

With this in mind, we also accept these statements to be logically equivalent:
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To dis-prove
(Fz)P(z)" (or ‘(Fz € 5)Q())
is the same as to prove
(Vy)(~P(y))" (or (Vz € S)(~Q(x))" respectively).

In practice, we may indeed prove the negation of (3z)P(z) (or (Jz € S)Q()
respectively); however, we may also proceed to obtain a contradiction from (dz) P(x)
(or (3z € S)Q(x) respectively).



8. Generalized intersections and generalized unions.

Definition.

Let M be a set, and {S,}°°, be an infinite sequence of subsets of the set M.
(For any n € N, S,, is a subset of M.)

(1) The (generalized) intersection of the infinite sequence of subsets
{5,122, of the set M is defined to be the set

{reM:z €S, foranyn € N}.
It is denoted by O(jo Sn-

(2) The (generalized) union of the infinite sequence of subsets {5}
of the set M is defined to be the set

{r e M:zeS, for somen € N}.

It is denoted by OLjO S



Remark.  Heuristical understanding of these definitions?

(1) Suppose x € M. Then

T € (()jooSn iff (z €S, foranyn e N)
it ‘v e Spand z € 57 and z € Sy and ..

Therefore O(%O S,, 1s the collection of exactly those x’s belonging to M which satisfies
n=

‘v € Spand z € Sy and x € Sy and ... .
Suppose S; = M whenever j > 2. Then O(%O S, = So N Si.
n=

(2) Suppose z € M. Then

x € CCJOO S, iff (z €S, for some n € N)
n—=

‘it ‘e e Sporx € Syorx € Syor ]

Therefore (L>JOO Sy, 1s the collection of exactly those x’s belonging to M which satisfies
n=

‘v € Sporz € Sjorx e Syor.. .
Suppose S; = () whenever j7 > 2. Then EJOO Sn = 8y U 5.
n=



Theorem ().

Let M be a set and {A,}2, be an infinite sequence of subsets of M.

(1) Let S be a subset of M. Suppose S C A, for any n € N. Then S C o(j)o A
(2) Let S be a subset of M. Suppose S C A,, for somen € N. Then S C OLjO Ap.
(3) Let T be a subset of M. Suppose A,, C T for any n € N. Then EJ_OO A, CT.

(4) Let T be a subset of M. Suppose A,, C T for some n € N. Then O(j)o A, CT.
 (5) Let C be a subset of M. ({A,UC}2 o, {A,NC}20, {AN\C 0, {C\Antsg

are infinite sequences of subsets of M.) The equalities below hold:

(5a) (Oﬁ) An) NC = Or? (AN C). (5¢) (ﬁoAn) \C = noéo(A”\@'
5b) (8, 4n) v o= fj au0). 6 (3 A= 3o
(50) (5, An) UC = %O 4,00). (6 C\ (N A) = T (C\A,)
5d) (G4 ne= Gano. 6o\ (T A) = FO\A)



We may further generalize the notions of intersection and union to arbitrary collec-
tions of subsets of any given set.

Deﬁnitionsf

(A) Let M beaset. The power set of M is defined to be theset {T | T is a subset of M }.
It is denoted by B(M). (So P(M) is the set of all subsets of M ) |

(B) Let M be a set, and C' be a subset of B(M). (So every element of C' is a subset
of M.)

(1) The (generalized) intersection of the set C of subsets of the set M
is defined to be the set {x € M : z € S for any S € C}.
It is denoted by m S (with the tacit understanding C' C *B(M)).

SeC
(2) The (generalized) union of the set C' of subsets of the set M is

defined to be the set {z € M : z € S for some S € C}.

It is denoted by U S (with the tacit understanding C' C B(M)).
SeC

Theorem (%) can be generalized for such notions of intersection and union. Consult
any standard textbook on set theory for detail.



