






















10. Example (i).
Let G be an (m × n)-matrix with real entries, and H be an (n × p)-matrix with real
entries. The statements below hold:

(1) The null space of H is a subset of the null space of GH .
(2) Suppose the null space of G is {0n}. Then the null space of GH is a subset of the null

space of H .
Remark. The null space N (K) of a (p× q)-matrix K with real entries is defined by
N (K) = {x ∈ Rq : Kv = 0p}.

11. Proofs of the statements in Example (i).
(1) [We want to prove ‘for any x ∈ Rp, if x ∈ N (H) then x ∈ N (GH)’.]

Pick any x ∈ Rp. Suppose x ∈ N (H).
[What to deduce? ‘x ∈ N (GH)’. What does it read? ‘(GH)x = 0m.’ How to reach
‘(GH)x = 0m’? Find out what ‘x ∈ N (H)’ reads: it is ‘Hx = 0n’.]
Then by the definition of N (H), we have Hx = 0n.
Therefore (GH)x = G(Hx) = G0n = 0m.
Hence, by the definition of N (GH), we have x ∈ N (GH).
It follows that N (H) ⊂ N (GH).
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(2) Suppose the null space of G is {0n}.

[We want to deduce, under the above assumption, that ‘N (GH) ⊂ N (H)’, which
reads: ‘for any x ∈ Rp, if x ∈ N (GH) then x ∈ N (H)’.]

Pick any u ∈ Rp. Suppose u ∈ N (GH).

[What to deduce? ‘u ∈ N (H)’. What does it read? ‘Hu = 0n.’ How to reach
‘Hu = 0n’? Find out what ‘u ∈ N (GH)’ reads: it is ‘(GH)u = 0m’.]

Then by the definition of N (GH), we have G(Hu) = (GH)u = 0m.

Therefore, by the definition of N (G), we have Hu ∈ N (G).

Since N (G) = {0m}, we have Hu ∈ {0m}. Then Hu = 0n.

Therefore, by the definition of N (H), we have u ∈ N (H).

It follows that N (GH) ⊂ N (H).
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12. Example (j).
Let S, T be subsets of Rn, G be an (m × n)-matrix with real entries, and H be an
(n× p)-matrix with real entries.

Define
S ′ = {y ∈ Rm : y = Gx for some x ∈ S},
T ′ = {y ∈ Rm : y = Gx for some x ∈ T}.

Define
S∗ = {u ∈ Rp : x = Hu for some x ∈ S},
T ∗ = {u ∈ Rp : x = Hu for some x ∈ T}.

The statements below hold:
(1) Suppose S is a subset of T . Then S ′ is a subset of T ′.
(2) Suppose S is a subset of T . Then S∗ is a subset of T ∗.
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13. Proofs of the statements in Example (j).
(1) Suppose S is a subset of T .

[We want to deduce, under the above assumption, that ‘S ′ is a subset of T ′ ’, which
reads: ‘for any y ∈ Rm, if y ∈ S ′ then y ∈ T ′ ’.]

[Recall what S ′ and T ′ are:
S ′ = {y ∈ Rm : y = Gx for some x ∈ S},
T ′ = {y ∈ Rm : y = Gx for some x ∈ T}, in which G is some fixed (m× n)-matrix.]

Pick any object y ∈ Rm. Suppose y ∈ S ′.

[What to deduce? ‘y ∈ T ′ ’. What does it read? ‘Unwrap’ ‘y ∈ T ′ ’ to see what it is.
How to reach ‘y ∈ T ′ ’? ‘Unwrap’ ‘y ∈ S ′ ’ to see what may help us.]

Then by the definition of S ′, there exists some x ∈ S such that y = Gx.

Note that x ∈ S, and by assumption S is a subset of T . Then, by the definition of
subset relations, x ∈ T .

Therefore x ∈ T and y = Gx for the same x,y.
Hence, by the definition of T ′, we have y ∈ T ′.

It follows that S ′ ⊂ T ′.
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(2) Suppose S is a subset of T .
[We want to deduce, under the above assumption, that that ‘S∗ is a subset of T ∗ ’,
which reads:‘for any u ∈ Rp, if u ∈ S∗ then u ∈ T ∗ ’.]

[Recall what S∗ and T ∗ are:
S∗ = {u ∈ Rp : x = Hu for some x ∈ S},
T ∗ = {u ∈ Rp : x = Hu for some x ∈ T}, in which H is some fixed (m× p)-matrix.]

Pick any object u ∈ Rp. Suppose u ∈ S∗.

[What to deduce? ‘u ∈ T ∗ ’. What does it read? ‘Unwrap’ ‘u ∈ T ∗ ’ to see what it is.
How to reach ‘u ∈ T ∗ ’? ‘Unwrap’ ‘u ∈ S∗ ’ to see what may help us.]

Then by the definition of S∗, there exists some x ∈ S such that x = Hu.

Note that x ∈ S, and by assumption S is a subset of T . Then, by the definition of
subset relations, x ∈ T .

Therefore x ∈ T and x = Hu, for the same x,u.
Hence, by the definition of T ∗, we have u ∈ T ∗.

It follows that S∗ ⊂ T ∗.
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