1. Recall Method of specification (for the construction of sets):

Suppose A is a set and $P(x)$ is a predicate with variable x.

• $\{x \mid P(x)\}\$ refers to the set (if it is indeed a set) which contains exactly every object x * for which the statement $P(x)$ is true.

Always remember:
be {x|P(x)} P(b) is true.

• $\{x \in A : P(x)\}\$ refers to the set which contains exactly every object x * which is an element of the given set A and * for which the statement $P(x)$ is true. FreA: PON3 By definition it is a subset of A .

$$
Always remember :\nb \in \{x \in A : P(x) \}
$$

\n
$$
if f
$$

\n
$$
(b \in A \text{ and } P(b) \text{ is true})
$$

- 2. Recall the notions of set equality and 'subset relations':
	- \bullet Let A, B be sets. A is said to be equal to B if both of the following statements $(†), (†) hold:$
	- (†) For any object x, [if $(x \in A)$ then $(x \in B)$].
	- (†) For any object y, [if $(y \in B)$ then $(y \in A)$].

We write $A = B$.

- Let A, B be sets. A is said to be a **subset** of B if the following statement (†) holds:
- (†) For any object x, [if $(x \in A)$ then $(x \in B)$]. \longleftarrow For each object x, we have: We write $A \subset B$ (or $B \supset A$).

3. Question.

What do we mean by 'A is not a subset of B '?

Answer.

 A is not a subset of B exactly when some element of A fails to be an element of B .

 X_{\circ} \forall

More useful formulation for the same thing (though formal):

• There exists some object x_0 such that $(x_0 \in A$ and $x_0 \notin B)$.

In this situation, we write $A \not\subset B$.

4. Example (a) .

Let $C = \{x \mid x = n^4 \text{ for some } n \in \mathbb{N}\}, D = \{x \mid x = n^2 \text{ for some } n \in \mathbb{N}\}.$ The following statements hold:

 $(2) D \not\subset C.$ (1) $C \subset D$.

Heuristic ideas for the statements:

- \bullet C is the set of all biquadratic numbers while D is the set of all square numbers.
- Every biquadratic number is the square of a square number. So we expect $C \subset D$ to hold.
- There may be some square number which is not a biquadratic number; for instance, the square of a non-square number. So we expect ' $D \not\subset C$ ' to hold.

These are the core ideas in the proofs. They need be present before we write the proofs.

We organize these ideas to give a coherent argument, with reference to the definitions of $C, D, 'C'.$

5. Proofs of the statements in Example (a).

There exits some mEN
such that x=m². (1) We want to prove 'for any x, if $x \in C$ then $x \in D'$. Pick any object x. Suppose $x \in C$. [What to deduce? ' $x \in D$ '. What does it read? 'Unwrap' ' $x \in D$ ' to see what it is. How to reach $x \in D$? 'Unwrap' $x \in C$ ' to see what may help us. Name an appropriate There exists some nEM such that $x = n^4$.
This has been given $Sincex \times eC$ there exits some nEN such that x= n4. Roughwork: Any appropriate mEN Take $m = n^2$. Then $x = n^4 = (n^2)^2 = m^2$. satisfying $x=m^2$? Since he M, we have me M!
Now we have $x=m^2$ and mEN. we expect
 $m^2 = X > N$. So $m = n^2$. Hence XED. It follows that $C \subseteq D$.

Proofs of the statements in Example (a).

 (2) [Preparation: find out what is to be done.

We want to prove that there exists some x_0 such that $x_0 \in D$ and $x_0 \notin C$. (This is an existence statement.) So we look for an appropriate x_0 .

Does our heuristic understanding of C, D in this specific example help us spot a candidate? Is such a candidate a 'good one'?

Roughwork: C = '
$$
\{0, 1, 16, 81, 625, ... \}
$$

\n
$$
D = ' $\{0, 1, 4, 9, 16, 25, ... \}$
\nHow about naming X₀ = 4 ?
$$

$$
That x.=\n\left[\n\begin{array}{c}\n\text{Take } x.=\uparrow \\
\text{Take } x.e. \text{ } 1 \text{ } 2\n\end{array}\n\right]\n\text{where that } x_{0} = 2^{2} \text{ and } 2 \in \mathbb{N}.
$$
\n
$$
Then x_{0} \in D.
$$
\n
$$
\left[\n\begin{array}{c}\n\text{Then } x_{0} \in D \\
\text{then } x_{0} \notin C\n\end{array}\n\right]
$$
\n
$$
Clamm: x_{0} \notin C.
$$

We justify this claim (with the help
\nd proof - by-contraditin) :
\n
$$
Suppre + were true that $x_0 \in C$.
\n
$$
Then there would exit some n EM such that\n
$$
x_0 = n^4
$$
.
\nNow $y = x_0 = n^4$.
\nSince $n \in \mathbb{R}$ and $n \ge 0$, we could have $n = \sqrt{2}$
\nNow $n = \sqrt{2}$ and $n \in \mathbb{N}$. Cotrad: it is a value.
$$
$$

6. Below are other examples similar to Example (a).

Example (b) . Let $C = \{x \mid x = r^4 \text{ for some } r \in \mathbb{Q}\}, D = \{x \mid x = r^2 \text{ for some } r \in \mathbb{Q}\}.$ The statements below hold:

 $(2) D \not\subset C.$ (1) $C \subset D$.

Example (c) .

Let $C = \{x \mid x = s+t\sqrt{2} \text{ for some } s,t \in \mathbb{Z}\}, D = \{x \mid x = u+v\sqrt{3} \text{ for some } u,v \in \mathbb{Z}\}.$ The statements below hold:

(1) $\mathbb{Z} \subset C \cap D$. (2) $C \not\subset D$. (3) $D \not\subset C$. (4) $C \cap D \subset \mathbb{Z}$. (5) $C \cap D = \mathbb{Z}$.

Example (d) . Let $C = \{x \mid x = s+t\sqrt{2} \text{ for some } s,t \in \mathbb{Q}\}, D = \{x \mid x = u+v\sqrt{3} \text{ for some } u,v \in \mathbb{Q}\}.$ The statements below hold:

(1) $\mathbb{Q} \subset C \cap D$. (2) $C \not\subset D$. (3) $D \not\subset C$. (4) $C \cap D \subset \mathbb{Q}$. (5) $C \cap D = \mathbb{Q}$.

7. Example (e).

Let $C = \{ \zeta \in \mathbb{C} : |Re(\zeta)| + |Im(\zeta)| < 1 \}, D = \{ \zeta \in \mathbb{C} : |\zeta| < 1 \}.$ The statements below hold:

 $(2) D \not\subset C.$ (1) $C \subset D$.

Heuristic ideas for the statements, which can be visualized using the Argand plane:

8. Proofs of the statements in Example (e).

Proofs of the statements in Example (e).

(2) Preparation: find out what is to be done. We want to prove that there exists some ζ_0 such that $\zeta_0 \in D$ and $\zeta_0 \notin C$. (This is an existence statement.) So we look for an appropriate ζ_0 . \cdots

 \cdot Take $S_{0} = \frac{1+i}{2}$
 \cdot Note that $|{\zeta}_{o}|^{2} = (Re({\zeta}_{o}))^{2} + (Im({\zeta}_{o}))^{2}$ $\frac{1}{4} + \frac{1}{4} = \frac{1}{2} < 1$ The $|S_{0}|<1$. Therefore $5.6D.$ Nite that $|Re(5.)| + |Im(5.)| = \frac{1}{2} + \frac{1}{2} = |$ Then $5.4C$. follow that $D \notin C$

9. Below are other examples similar to Example (e).

Example (f) . Let $C = \{ \zeta \in \mathbb{C} : |\zeta - 1| \le 1 \}, D = \{ \zeta \in \mathbb{C} : |\zeta| \le 2 \}.$ The statements below hold:

 $(2) D \not\subset C.$ (1) $C \subset D$.

Example (g) .

Let $C = \{ \zeta \in \mathbb{C} : \text{Re}(\zeta) \ge 0 \}, D = \{ \zeta \in \mathbb{C} : \text{Im}(\zeta) \ge 0 \}, E = \{ \zeta \in \mathbb{C} : |\zeta - 1 - i| \le 1 \}.$ The statements below hold:

(1) $E \subset C \cap D$. (2) $C \not\subset D$. (3) $D \not\subset C$.

Example (h) . Let $C = \{ \zeta \in \mathbb{C} : |\zeta - 4| < 5 \}, D = \{ \zeta \in \mathbb{C} : |\zeta + 4| < 5 \}, E = \{ \zeta \in \mathbb{C} : |\zeta| < 3 \}.$ The statements below hold:

(1) $C \not\subset D$. (2) $D \not\subset C$. (3) $E \not\subset C$. (4) $E \not\subset D$. (5) $E \subset C \cup D$.

10. **Example (i).**

Let *G* be an $(m \times n)$ -matrix with real entries, and *H* be an $(n \times p)$ -matrix with real *entries. The statements below hold:*

- (1) *The null space of H is a subset of the null space of GH.*
- (2) Suppose the null space of G is $\{0_n\}$. Then the null space of GH is a subset of the null *space of H.*

Remark. *The null space* $\mathcal{N}(K)$ *of a* $(p \times q)$ *-matrix K with real entries is defined by* $\mathcal{N}(K) = {\mathbf{x} \in \mathbb{R}^q : K\mathbf{v} = \mathbf{0}_p}.$

11. **Proofs of the statements in Example (i)**.

(1) [We want to prove 'for any $\mathbf{x} \in \mathbb{R}^p$, if $\mathbf{x} \in \mathcal{N}(H)$ then $\mathbf{x} \in \mathcal{N}(GH)$ '.] Pick any $\mathbf{x} \in \mathbb{R}^p$. Suppose $\mathbf{x} \in \mathcal{N}(H)$. [What to deduce? ' $\mathbf{x} \in \mathcal{N}(GH)$ '. What does it read? ' $(GH)\mathbf{x} = \mathbf{0}_m$.' How to reach $\mathcal{L}(GH)\mathbf{x} = \mathbf{0}_m$? Find out what $\mathbf{x} \in \mathcal{N}(H)$ reads: it is $^tH\mathbf{x} = \mathbf{0}_n$.] Then by the definition of $\mathcal{N}(H)$, we have $H\mathbf{x} = \mathbf{0}_n$. Therefore $(GH)\mathbf{x} = G(H\mathbf{x}) = G\mathbf{0}_n = \mathbf{0}_m$. Hence, by the definition of $\mathcal{N}(GH)$, we have $\mathbf{x} \in \mathcal{N}(GH)$. It follows that $\mathcal{N}(H) \subset \mathcal{N}(GH)$.

(2) Suppose the null space of *G* is $\{0_n\}$.

[We want to deduce, under the above assumption, that $\mathcal{N}(GH) \subset \mathcal{N}(H)$ ', which reads: 'for any $\mathbf{x} \in \mathbb{R}^p$, if $\mathbf{x} \in \mathcal{N}(GH)$ then $\mathbf{x} \in \mathcal{N}(H)$ '.]

Pick any $\mathbf{u} \in \mathbb{R}^p$. Suppose $\mathbf{u} \in \mathcal{N}(GH)$.

[What to deduce? $\mathbf{u} \in \mathcal{N}(H)$. What does it read? $\mathbf{u} = \mathbf{0}_n$. How to reach $H\mathbf{u} = \mathbf{0}_n$? Find out what $'\mathbf{u} \in \mathcal{N}(GH)$ reads: it is $'(GH)\mathbf{u} = \mathbf{0}_m$.]

Then by the definition of $\mathcal{N}(GH)$, we have $G(H\mathbf{u}) = (GH)\mathbf{u} = \mathbf{0}_m$.

Therefore, by the definition of $\mathcal{N}(G)$, we have $H\mathbf{u} \in \mathcal{N}(G)$.

Since $\mathcal{N}(G) = \{\mathbf{0}_m\}$, we have $H\mathbf{u} \in \{\mathbf{0}_m\}$. Then $H\mathbf{u} = \mathbf{0}_n$.

Therefore, by the definition of $\mathcal{N}(H)$, we have $\mathbf{u} \in \mathcal{N}(H)$.

It follows that $\mathcal{N}(GH) \subset \mathcal{N}(H)$.

12. **Example (j).**

Let S, T be subsets of \mathbb{R}^n , G be an $(m \times n)$ -matrix with real entries, and H be an $(n \times p)$ -matrix with real entries.

Define

 $S' = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = G\mathbf{x} \text{ for some } \mathbf{x} \in S \},\$ $T' = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = G\mathbf{x} \text{ for some } \mathbf{x} \in T \}.$

Define

$$
S^* = \{ \mathbf{u} \in \mathbb{R}^p : \mathbf{x} = H\mathbf{u} \text{ for some } \mathbf{x} \in S \},
$$

$$
T^* = \{ \mathbf{u} \in \mathbb{R}^p : \mathbf{x} = H\mathbf{u} \text{ for some } \mathbf{x} \in T \}.
$$

The statements below hold:

(1) Suppose S is a subset of T . Then S' is a subset of T' . (2) Suppose *S* is a subset of *T*. Then S^* is a subset of T^* .

13. **Proofs of the statements in Example (j)**.

(1) Suppose *S* is a subset of *T*.

[We want to deduce, under the above assumption, that 'S' is a subset of T' ', which reads: 'for any $\mathbf{y} \in \mathbb{R}^m$, if $\mathbf{y} \in S'$ then $\mathbf{y} \in T'$ '.]

[Recall what S' and T' are: $S' = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = G\mathbf{x} \text{ for some } \mathbf{x} \in S \},\$ $T' = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = G\mathbf{x} \text{ for some } \mathbf{x} \in T \}, \text{ in which } G \text{ is some fixed } (m \times n) \text{-matrix.} \}$

Pick any object $y \in \mathbb{R}^m$. Suppose $y \in S'$.

[What to deduce? ' $y \in T'$ '. What does it read? 'Unwrap' ' $y \in T'$ ' to see what it is. How to reach ' $y \in T'$ '? 'Unwrap' ' $y \in S'$ ' to see what may help us.]

Then by the definition of *S*^{\prime}, there exists some $\mathbf{x} \in S$ such that $\mathbf{y} = G\mathbf{x}$.

Note that $\mathbf{x} \in S$, and by assumption *S* is a subset of *T*. Then, by the definition of subset relations, $\mathbf{x} \in T$.

Therefore $\mathbf{x} \in T$ and $\mathbf{y} = G\mathbf{x}$ for the same \mathbf{x}, \mathbf{y} . Hence, by the definition of T' , we have $y \in T'$.

It follows that $S' \subset T'$.

(2) Suppose *S* is a subset of *T*.

[We want to deduce, under the above assumption, that that '*S ∗* is a subset of *T ∗* ', which reads: 'for any $\mathbf{u} \in \mathbb{R}^p$, if $\mathbf{u} \in S^*$ then $\mathbf{u} \in T^*$ '.]

[Recall what S^* and T^* are: $S^* = {\mathbf{u} \in \mathbb{R}^p : \mathbf{x} = H\mathbf{u} \text{ for some } \mathbf{x} \in S},$ $T^* = \{ \mathbf{u} \in \mathbb{R}^p : \mathbf{x} = H \mathbf{u} \text{ for some } \mathbf{x} \in T \}, \text{ in which } H \text{ is some fixed } (m \times p)\text{-matrix.} \}$

Pick any object $\mathbf{u} \in \mathbb{R}^p$. Suppose $\mathbf{u} \in S^*$.

[What to deduce? $'u \in T^*$ '. What does it read? $'U₁W₁W₁W₂W₃W₄W₅W₅W₆W₇W₈W₇W₈W₈W₉W₁W₁W₁W₁W₁W₁W<$ How to reach ' $\mathbf{u} \in T^*$ '? 'Unwrap' ' $\mathbf{u} \in S^*$ ' to see what may help us.]

Then by the definition of S^* , there exists some $\mathbf{x} \in S$ such that $\mathbf{x} = H\mathbf{u}$.

Note that $\mathbf{x} \in S$, and by assumption *S* is a subset of *T*. Then, by the definition of subset relations, $\mathbf{x} \in T$.

Therefore $\mathbf{x} \in T$ and $\mathbf{x} = H\mathbf{u}$, for the same \mathbf{x}, \mathbf{u} . Hence, by the definition of T^* , we have $\mathbf{u} \in T^*$.

It follows that $S^* \subset T^*$.