
MATH1050 De Moivre’s Theorem and roots of unity

1. Definition.

Let z be a complex number.

The modulus of z, which we denote by |z|, is defined by |z| =
√

(Re(z))2 + (Im(z))2.

The expression z = |z|(cos(θ) + i sin(θ)) (for some appropriate real number θ) is called the polar form of z.

If z 6= 0, then such a number θ is called an argument for z. Furthermore, if −π < θ ≤ π, then θ is called the
principal argument of z.

Remark. That this definition makes sense is guaranteed by the statement below, which needs be justified carefully:

• Let z be a complex number. There exists some θ ∈ R such that z = |z|(cos(θ) + i sin(θ)).

Further remark. Multiplication and division for complex numbers can be given a nice geometric interpretation
in terms of polar form:

Suppose z, w are non-zero complex numbers, with arguments θ, ϕ respectively. Then:

(a) zw = |z||w|(cos(θ + ϕ) + i sin(θ + ϕ)), and
z

w
=

|z|

|w|
(cos(θ − ϕ) + i sin(θ − ϕ)).

(b) The modulus of zw is |z||w|, and the modulus of
z

w
is

|z|

|w|
.

(c) θ + ϕ is an argument for zw, and θ − ϕ is an argument for
z

w
.

real axis

imaginary axis

0

z = |z|(cos(θ) + i sin(θ))

w = |w|(cos(ϕ) + i sin(ϕ))

zw = |z||w|(cos(θ + ϕ) + i sin(θ + ϕ))

2. Lemma (1). (Special case of De Moivre’s Theorem.)

Let θ be a real number. For any n ∈ N\{0}, (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ).

Proof. Let θ be a real number.

• For any n ∈ N\{0}, denote by P (n) the proposition (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ).

• (cos(θ) + i sin(θ))1 = cos(1 · θ) + i sin(1 · θ). Then P (1) is true.

• Let k ∈ N\{0}. Suppose P (k) is true. Then (cos(θ) + i sin(θ))k = cos(kθ) + i sin(kθ).

We prove that P (k + 1) is true:

(cos(θ) + i sin(θ))k+1 = (cos(θ) + i sin(θ))k(cos(θ) + i sin(θ))

= (cos(kθ) + i sin(kθ))(cos(θ) + i sin(θ))

= (cos(kθ) cos(θ)− sin(kθ) sin(θ)) + i(sin(kθ) cos(θ) + cos(kθ) sin(θ))

= cos(kθ + θ) + i sin(kθ + θ) = cos((k + 1)θ) + i sin((k + 1)θ)

Hence P (k + 1) is true.

• By the Principle of Mathematical Induction, P (n) is true for any n ∈ N\{0}.
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3. De Moivre’s Theorem.

Let θ be a real number. For any m ∈ Z, (cos(θ) + i sin(θ))m = cos(mθ) + i sin(mθ).

Proof. Let θ be a real number. Let m ∈ Z.

• (Case 1). Suppose m = 0. Then

(cos(θ) + i sin(θ))m = (cos(θ) + i sin(θ))0 = 1 = (cos(0 · θ) + i sin(0 · θ)) = cos(mθ) + i sin(mθ).

• (Case 2). Suppose m > 0. By Lemma (1), we have (cos(θ) + i sin(θ))m = cos(mθ) + i sin(mθ).

• (Case 3). Suppose m < 0. Define n = −m. Then n ∈ N\{0}. Therefore

(cos(θ) + i sin(θ))m =
1

(cos(θ) + i sin(θ))n
=

1

cos(nθ) + i sin(nθ)
= cos(nθ)− i sin(nθ) = cos(mθ) + i sin(mθ).

Hence in any case, (cos(θ) + i sin(θ))m = cos(mθ) + i sin(mθ).

4. Definition.
Let ζ be a complex number. Let n be a positive integer. ζ is called an n-th root of unity if ζn = 1.

Remark. ζ is an n-th root of unity iff ζ is a root of the polynomial zn − 1 in the complex numbers.)

5. Theorem (2).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

(a) ωn is an n-th root of unity.

(b) The n-th roots of unity are the n complex numbers of modulus 1, given by 1, ωn, ωn
2, ..., ωn

n−1.

Remark. How to visualize these n numbers in terms of plane geometry? They are the n vertices of the regular
n-sided polygon inscribed in the unit circle with centre 0 in the Argand plane, with one vertex at the point 1.

n = 3:

real axis

imaginary axis

0 1

ω3

ω3
2

n = 4:

real axis

imaginary axis

0 1

ω4 = i

−1

ω4
3 = −i

n = 5:

real axis

imaginary axis

0 1

ω5

ω5
2

ω5
3

ω5
4

n = 6:

real axis

imaginary axis

0 1

ω6ω6
2

−1

ω6
4 ω6

5

n = 7:

real axis

imaginary axis

0 1

ω7

ω7
2

ω7
3

ω7
4

ω7
5 ω7

6

n = 8:

real axis

imaginary axis

0 1

ω8

i
ω8

3

−1

ω8
5

−i
ω8

7

6. Tacit assumption needed in the argument for Theorem (2).

A tacit assumption, known as Division Algorithm for integers, is used in the argument. It reads:

Let u, v ∈ Z. Suppose v 6= 0. Then there exist some unique q, r ∈ Z such that u = qv + r and 0 ≤ r < |v|.
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7. Proof of Theorem (2).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

(a) By De Moivre’s Theorem, we have (ωn)
n = (cos(nθn) + i sin(nθn)) = cos(2π) + i sin(2π) = 1.

(b) i. For each k = 0, 1, 2, · · · , n− 1, we have (ωn
k)n = (ωn

n)k = 1k = 1.

ii. Let ζ be a complex number. Suppose ζ is an n-th root of unity. Then ζn = 1. [We want to deduce that
ζ = ωn

r for some r ∈ J0, n− 1K.]
We have |ζ|n = 1. Then |ζ| = 1. ζ has an argument, say, ϕ. Therefore ζ = cos(ϕ) + i sin(ϕ).
By De Moivre’s Theorem, we have 1 = ζn = (cos(ϕ) + i sin(ϕ))n = (cos(nϕ) + i sin(nϕ)).
Then cos(nϕ) = 1 and sin(nϕ) = 0. Therefore there exists some m ∈ Z such that nϕ = 2mπ.

Now ϕ =
m

n
· 2π = mθn.

By Division Algorithm for the integers, there exist some q, r ∈ Z such that m = qn+ r and 0 ≤ r < n.
Then we have ϕ = mθn = (qn+ r)θn = qnθn + rθn = 2qπ + rθn.
Therefore ζ = cos(ϕ) + i sin(ϕ) = cos(rθn) + i sin(rθn) = ωn

r.

8. Corollary (3).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

The polynomial zn−1 with indeterminate z is completely factorized as zn−1 = (z−1)(z−ωn)(z−ωn
2)·...·(z−ωn

n−1).

Proof. Exercise. (Apply Factor Theorem.)

Remark. In fact, the polynomial zn − 1 can be factorized as a product of finitely many quadratic polynomials
with real coefficients

z2 − 2z cos(θn) + 1, z2 − 2z cos(2θn) + 1, z2 − 2z cos(3θn) + 1, · · ·

and the linear polynomial z − 1 and, when n is even, also together with the linear polynomial z + 1. (The argument

starts with the observation that ωn
−1 = ωn. Why? How?)

9. Definition.
Let n be a positive integer. Let w, ζ be complex numbers. ζ is said to be an n-th root of w if ζn = w.

Remark. ζ is an n-th root of w iff ζ is a root of the polynomial zn − w in the complex numbers.

10. Lemma (4).

Let n be a positive integer. Let w be a non-zero complex number. Suppose ϕ is an argument for w.

Then ζ = n

√

|w|
(

cos
(ϕ

n

)

+ i sin
(ϕ

n

))

is an n-th root of w.

Proof. Exercise. (Apply De Moivre’s Theorem.)

11. Theorem (5).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Let w be a non-zero complex number, and ζ be an n-th root of w in the complex numbers.

The n-th roots of w are the n complex numbers given by ζ, ζωn, ζωn
2, · · · , ζωn

n−1.

Remark. How to visualize these n numbers in terms of plane geometry? They are the n vertices of the regular

n-sided polygon inscribed in the circle with centre 0 and radius n

√

|w| in the Argand plane, with one vertex at the
point ζ.

• Cubic roots:

real axis

imaginary axis

0

w = |w|(cos(ϕ) + i sin(ϕ))

ζ = 3

√

|w|(cos(ϕ/3) + i sin(ϕ/3))

ζω3

ζω3
2
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• Quintic roots:

real axis

imaginary axis

0

w = |w|(cos(ϕ) + i sin(ϕ))

ζ = 5

√

|w|(cos(ϕ/5) + i sin(ϕ/5))

ζω5

ζω5
2

ζω5
3

ζω5
4

12. Proof of Theorem (5).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Let w be a non-zero complex number, and ζ be an n-th root of w in the complex numbers.

• We have ζn = w.

For each n = 0, 1, 2, · · · , n− 1, we have (ωn
k)n = 1. Then (ζωn

k)n = ζn(ωn
n)k = 1 · 1k = 1.

• Let ρ be a complex number. Suppose ρ is an n-th root of w.

Then ρn = w. We have

(

ρ

ζ

)n

=
ρn

ζn
=

w

w
= 1.

Then
ρ

ζ
is an n-th root of unity. Therefore there exists some r = 0, 1, 2, · · · , n − 1 such that

ρ

ζ
= ωn

r. For the

same r, we have ρ = ζωn
r.

13. Corollary (6).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Let w be a non-zero complex number, and ζ be an n-th root of w in the complex numbers.

The polynomial zn − w with indeterminate z is completely factorized as

zn − w = (z − ζ)(z − ζωn)(z − ζωn
2) · ... · (z − ζωn

n−1).

Proof. Exercise. (Apply Factor Theorem.)
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