1. Definition.

Let z be a complex number.

The **modulus** of z, which we denote by |z|, is defined by $|z| = \sqrt{(\text{Re}(z))^2 + (\text{Im}(z))^2}$.

The expression $z = |z|(\cos(\theta) + i\sin(\theta))$ (for some appropriate real number θ) is called the **polar form** of z.

If $z \neq 0$, then such a number θ is called an **argument** for z. Furthermore, if $-\pi < \theta \leq \pi$, then θ is called the **principal argument** of z.

Remark. That this definition makes sense is guaranteed by the statement below, which needs be justified carefully:

• Let z be a complex number. There exists some $\theta \in \mathbb{R}$ such that $z = |z|(\cos(\theta) + i\sin(\theta))$.

Further remark. Multiplication and division for complex numbers can be given a nice geometric interpretation in terms of polar form:

Suppose z, w are non-zero complex numbers, with arguments θ, φ respectively. Then:

(a)
$$zw = |z||w|(\cos(\theta + \varphi) + i\sin(\theta + \varphi))$$
, and $\frac{z}{w} = \frac{|z|}{|w|}(\cos(\theta - \varphi) + i\sin(\theta - \varphi))$.

- (b) The modulus of zw is |z||w|, and the modulus of $\frac{z}{w}$ is $\frac{|z|}{|w|}$.
- (c) $\theta + \varphi$ is an argument for zw, and $\theta \varphi$ is an argument for $\frac{z}{w}$.

2. Lemma (1). (Special case of De Moivre's Theorem.)

Let θ be a real number. For any $n \in \mathbb{N} \setminus \{0\}$, $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.

Proof. Let θ be a real number.

- For any $n \in \mathbb{N} \setminus \{0\}$, denote by P(n) the proposition $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.
- $(\cos(\theta) + i\sin(\theta))^1 = \cos(1 \cdot \theta) + i\sin(1 \cdot \theta)$. Then P(1) is true.
- Let $k \in \mathbb{N} \setminus \{0\}$. Suppose P(k) is true. Then $(\cos(\theta) + i\sin(\theta))^k = \cos(k\theta) + i\sin(k\theta)$. We prove that P(k+1) is true:

$$\begin{aligned} (\cos(\theta) + i\sin(\theta))^{k+1} &= (\cos(\theta) + i\sin(\theta))^k (\cos(\theta) + i\sin(\theta)) \\ &= (\cos(k\theta) + i\sin(k\theta))(\cos(\theta) + i\sin(\theta)) \\ &= (\cos(k\theta)\cos(\theta) - \sin(k\theta)\sin(\theta)) + i(\sin(k\theta)\cos(\theta) + \cos(k\theta)\sin(\theta)) \\ &= \cos(k\theta + \theta) + i\sin(k\theta + \theta) = \cos((k+1)\theta) + i\sin((k+1)\theta) \end{aligned}$$

Hence P(k+1) is true.

• By the Principle of Mathematical Induction, P(n) is true for any $n \in \mathbb{N} \setminus \{0\}$.

3. De Moivre's Theorem.

Let θ be a real number. For any $m \in \mathbb{Z}$, $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.

Proof. Let θ be a real number. Let $m \in \mathbb{Z}$.

• (Case 1). Suppose m = 0. Then

$$(\cos(\theta) + i\sin(\theta))^m = (\cos(\theta) + i\sin(\theta))^0 = 1 = (\cos(0 \cdot \theta) + i\sin(0 \cdot \theta)) = \cos(m\theta) + i\sin(m\theta).$$

- (Case 2). Suppose m > 0. By Lemma (1), we have $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.
- (Case 3). Suppose m < 0. Define n = -m. Then $n \in \mathbb{N} \setminus \{0\}$. Therefore

$$(\cos(\theta) + i\sin(\theta))^m = \frac{1}{(\cos(\theta) + i\sin(\theta))^n} = \frac{1}{\cos(n\theta) + i\sin(n\theta)} = \cos(n\theta) - i\sin(n\theta) = \cos(m\theta) + i\sin(m\theta).$$

Hence in any case, $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.

4. Definition.

Let ζ be a complex number. Let n be a positive integer. ζ is called an n-th root of unity if $\zeta^n = 1$.

Remark. ζ is an *n*-th root of unity iff ζ is a root of the polynomial $z^n - 1$ in the complex numbers.)

5. Theorem (2).

Let n be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

- (a) ω_n is an *n*-th root of unity.
- (b) The *n*-th roots of unity are the *n* complex numbers of modulus 1, given by 1, ω_n , ω_n^2 , ..., ω_n^{n-1} .

Remark. How to visualize these n numbers in terms of plane geometry? They are the n vertices of the regular n-sided polygon inscribed in the unit circle with centre 0 in the Argand plane, with one vertex at the point 1.

$$n = 3$$
:

imaginary axis

$$n = 5$$
:

imaginary axis

$$n = 7$$
:

imaginary axis

$$n = 4$$
:

imaginary axis

$$n = 6$$
:

imaginary axis

$$n = 8$$
:

imaginary axis

6. Tacit assumption needed in the argument for Theorem (2).

A tacit assumption, known as Division Algorithm for integers, is used in the argument. It reads:

Let $u, v \in \mathbb{Z}$. Suppose $v \neq 0$. Then there exist some unique $q, r \in \mathbb{Z}$ such that u = qv + r and $0 \leq r < |v|$.

7. Proof of Theorem (2).

Let n be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

- (a) By De Moivre's Theorem, we have $(\omega_n)^n = (\cos(n\theta_n) + i\sin(n\theta_n)) = \cos(2\pi) + i\sin(2\pi) = 1$.
- (b) i. For each $k = 0, 1, 2, \dots, n 1$, we have $(\omega_n^k)^n = (\omega_n^n)^k = 1^k = 1$.
 - ii. Let ζ be a complex number. Suppose ζ is an n-th root of unity. Then $\zeta^n = 1$. [We want to deduce that $\zeta = \omega_n^r$ for some $r \in [0, n-1]$.]

We have $|\zeta|^n = 1$. Then $|\zeta| = 1$. ζ has an argument, say, φ . Therefore $\zeta = \cos(\varphi) + i\sin(\varphi)$.

By De Moivre's Theorem, we have $1 = \zeta^n = (\cos(\varphi) + i\sin(\varphi))^n = (\cos(n\varphi) + i\sin(n\varphi))$.

Then $\cos(n\varphi) = 1$ and $\sin(n\varphi) = 0$. Therefore there exists some $m \in \mathbb{Z}$ such that $n\varphi = 2m\pi$.

Now
$$\varphi = \frac{m}{n} \cdot 2\pi = m\theta_n$$
.

By Division Algorithm for the integers, there exist some $q, r \in \mathbb{Z}$ such that m = qn + r and $0 \le r < n$.

Then we have $\varphi = m\theta_n = (qn + r)\theta_n = qn\theta_n + r\theta_n = 2q\pi + r\theta_n$.

Therefore $\zeta = \cos(\varphi) + i\sin(\varphi) = \cos(r\theta_n) + i\sin(r\theta_n) = \omega_n^r$.

8. Corollary (3).

Let n be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

The polynomial z^n-1 with indeterminate z is completely factorized as $z^n-1=(z-1)(z-\omega_n)(z-\omega_n^2)\cdot\ldots\cdot(z-\omega_n^{n-1})$.

Proof. Exercise. (Apply Factor Theorem.)

Remark. In fact, the polynomial $z^n - 1$ can be factorized as a product of finitely many quadratic polynomials with real coefficients

$$z^{2} - 2z\cos(\theta_{n}) + 1$$
, $z^{2} - 2z\cos(2\theta_{n}) + 1$, $z^{2} - 2z\cos(3\theta_{n}) + 1$, ...

and the linear polynomial z-1 and, when n is even, also together with the linear polynomial z+1. (The argument starts with the observation that $\omega_n^{-1} = \overline{\omega_n}$. Why? How?)

9. **Definition.**

Let n be a positive integer. Let w, ζ be complex numbers. ζ is said to be an n-th root of w if $\zeta^n = w$.

Remark. ζ is an *n*-th root of w iff ζ is a root of the polynomial $z^n - w$ in the complex numbers.

10. Lemma (4).

Let n be a positive integer. Let w be a non-zero complex number. Suppose φ is an argument for w.

Then
$$\zeta = \sqrt[n]{|w|} \left(\cos \left(\frac{\varphi}{n} \right) + i \sin \left(\frac{\varphi}{n} \right) \right)$$
 is an *n*-th root of w .

Proof. Exercise. (Apply De Moivre's Theorem.)

11. Theorem (5).

Let n be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

Let w be a non-zero complex number, and ζ be an n-th root of w in the complex numbers.

The *n*-th roots of w are the *n* complex numbers given by $\zeta, \zeta \omega_n, \zeta \omega_n^2, \cdots, \zeta \omega_n^{n-1}$.

Remark. How to visualize these n numbers in terms of plane geometry? They are the n vertices of the regular n-sided polygon inscribed in the circle with centre 0 and radius $\sqrt[n]{|w|}$ in the Argand plane, with one vertex at the point ζ .

• Cubic roots:

• Quintic roots:

12. Proof of Theorem (5).

Let n be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

Let w be a non-zero complex number, and ζ be an n-th root of w in the complex numbers.

- We have $\zeta^n = w$. For each $n = 0, 1, 2, \dots, n-1$, we have $(\omega_n^k)^n = 1$. Then $(\zeta \omega_n^k)^n = \zeta^n (\omega_n^n)^k = 1 \cdot 1^k = 1$.
- Let ρ be a complex number. Suppose ρ is an n-th root of w.

Then
$$\rho^n = w$$
. We have $\left(\frac{\rho}{\zeta}\right)^n = \frac{\rho^n}{\zeta^n} = \frac{w}{w} = 1$.

Then $\frac{\rho}{\zeta}$ is an *n*-th root of unity. Therefore there exists some $r=0,1,2,\cdots,n-1$ such that $\frac{\rho}{\zeta}=\omega_n{}^r$. For the same r, we have $\rho=\zeta\omega_n{}^r$.

13. Corollary (6).

Let n be a positive integer. Write $\theta_n = \frac{2\pi}{n}$. Define $\omega_n = \cos(\theta_n) + i\sin(\theta_n)$.

Let w be a non-zero complex number, and ζ be an n-th root of w in the complex numbers.

The polynomial $z^n - w$ with indeterminate z is completely factorized as

$$z^{n} - w = (z - \zeta)(z - \zeta\omega_{n})(z - \zeta\omega_{n}^{2}) \cdot \dots \cdot (z - \zeta\omega_{n}^{n-1}).$$

4

Proof. Exercise. (Apply Factor Theorem.)