MATH1050 De Moivre's Theorem and roots of unity

1. Definition.

Let z *be a complex number.*

The **modulus** of z, which we denote by |z|, is defined by $|z| = \sqrt{(\text{Re}(z))^2 + (\text{Im}(z))^2}$.

The expression $z = |z|(\cos(\theta) + i\sin(\theta))$ *(for some appropriate real number* θ *) is called the* **polar form** *of* z.

If $z \neq 0$, then such a number θ *is called an* argument for z. Furthermore, if $-\pi < \theta \leq \pi$, then θ *is called the* principal argument *of* z*.*

Remark. That this definition makes sense is guaranteed by the statement below, which needs be justified carefully:

• Let z be a complex number. There exists some $\theta \in \mathbb{R}$ such that $z = |z|(\cos(\theta) + i\sin(\theta))$.

Further remark. Multiplication and division for complex numbers can be given a nice geometric interpretation in terms of polar form:

Suppose z, w are non-zero complex numbers, with arguments θ , φ respectively. Then:

- (a) $zw = |z||w|(\cos(\theta + \varphi) + i\sin(\theta + \varphi))$ *, and* $\frac{z}{w} = \frac{|z|}{|w|}$ $\frac{|\mathcal{P}|}{|w|}(\cos(\theta-\varphi)+i\sin(\theta-\varphi)).$
- (b) The modulus of zw is $|z| |w|$, and the modulus of $\frac{z}{w}$ is $\frac{|z|}{|w|}$ $\frac{|z|}{|w|}$.
- (c) $\theta + \varphi$ *is an argument for zw, and* $\theta \varphi$ *is an argument for* $\frac{z}{w}$.

2. Lemma (1). (Special case of De Moivre's Theorem.)

Let θ be a real number. For any $n \in \mathbb{N} \setminus \{0\}$, $(\cos(\theta) + i \sin(\theta))^n = \cos(n\theta) + i \sin(n\theta)$. **Proof.** Let θ be a real number.

- For any $n \in \mathbb{N} \setminus \{0\}$, denote by $P(n)$ the proposition $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.
- $(\cos(\theta) + i\sin(\theta))^1 = \cos(1 \cdot \theta) + i\sin(1 \cdot \theta)$. Then $P(1)$ is true.
- Let $k \in \mathbb{N} \setminus \{0\}$. Suppose $P(k)$ is true. Then $(\cos(\theta) + i\sin(\theta))^k = \cos(k\theta) + i\sin(k\theta)$. We prove that $P(k+1)$ is true:

$$
(\cos(\theta) + i\sin(\theta))^{k+1} = (\cos(\theta) + i\sin(\theta))^k(\cos(\theta) + i\sin(\theta))
$$

\n
$$
= (\cos(k\theta) + i\sin(k\theta))(\cos(\theta) + i\sin(\theta))
$$

\n
$$
= (\cos(k\theta)\cos(\theta) - \sin(k\theta)\sin(\theta)) + i(\sin(k\theta)\cos(\theta) + \cos(k\theta)\sin(\theta))
$$

\n
$$
= \cos(k\theta + \theta) + i\sin(k\theta + \theta) = \cos((k+1)\theta) + i\sin((k+1)\theta)
$$

Hence $P(k+1)$ is true.

• By the Principle of Mathematical Induction, $P(n)$ is true for any $n \in \mathbb{N} \setminus \{0\}.$

3. De Moivre's Theorem.

Let θ be a real number. For any $m \in \mathbb{Z}$, $(\cos(\theta) + i \sin(\theta))^m = \cos(m\theta) + i \sin(m\theta)$. **Proof.** Let θ be a real number. Let $m \in \mathbb{Z}$.

• (Case 1). Suppose $m = 0$. Then

$$
(\cos(\theta) + i\sin(\theta))^m = (\cos(\theta) + i\sin(\theta))^0 = 1 = (\cos(0 \cdot \theta) + i\sin(0 \cdot \theta)) = \cos(m\theta) + i\sin(m\theta).
$$

- (Case 2). Suppose $m > 0$. By Lemma (1), we have $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.
- (Case 3). Suppose $m < 0$. Define $n = -m$. Then $n \in \mathbb{N} \setminus \{0\}$. Therefore

$$
(\cos(\theta) + i\sin(\theta))^m = \frac{1}{(\cos(\theta) + i\sin(\theta))^n} = \frac{1}{\cos(n\theta) + i\sin(n\theta)} = \cos(n\theta) - i\sin(n\theta) = \cos(m\theta) + i\sin(m\theta).
$$

Hence in any case, $(\cos(\theta) + i\sin(\theta))^m = \cos(m\theta) + i\sin(m\theta)$.

4. Definition.

Let ζ *be a complex number.* Let *n be a positive integer.* ζ *is called an n*-th root of unity *if* $\zeta^n = 1$ *.* **Remark.** ζ is an *n*-th root of unity iff ζ is a root of the polynomial $z^n - 1$ in the complex numbers.)

5. Theorem (2).

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$ $\frac{d}{n}$. Define $\omega_n = \cos(\theta_n) + i \sin(\theta_n)$.

- (a) ω_n *is an n-th root of unity.*
- (b) The *n*-th roots of unity are the *n* complex numbers of modulus 1, given by 1, ω_n , ω_n^2 , ..., ω_n^{n-1} .

Remark. How to visualize these n numbers in terms of plane geometry? They are the n vertices of the regular n-sided polygon inscribed in the unit circle with centre 0 in the Argand plane, with one vertex at the point 1.

6. Tacit assumption needed in the argument for Theorem (2).

A tacit assumption, known as Division Algorithm for integers, is used in the argument. It reads: *Let* $u, v \in \mathbb{Z}$ *. Suppose* $v \neq 0$ *. Then there exist some unique* $q, r \in \mathbb{Z}$ *such that* $u = qv + r$ *and* $0 \leq r < |v|$ *.*

7. Proof of Theorem (2).

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$ $\frac{1}{n}$. Define $\omega_n = \cos(\theta_n) + i \sin(\theta_n)$.

- (a) By De Moivre's Theorem, we have $(\omega_n)^n = (\cos(n\theta_n) + i\sin(n\theta_n)) = \cos(2\pi) + i\sin(2\pi) = 1$.
- (b) i. For each $k = 0, 1, 2, \dots, n 1$, we have $(\omega_n^k)^n = (\omega_n^k)^k = 1^k = 1$.

ii. Let ζ be a complex number. Suppose ζ is an *n*-th root of unity. Then $\zeta^n = 1$. [We want to deduce that $\zeta = \omega_n^r$ for some $r \in [0, n-1]$.] We have $|\zeta|^n = 1$. Then $|\zeta| = 1$. ζ has an argument, say, φ . Therefore $\zeta = \cos(\varphi) + i\sin(\varphi)$. By De Moivre's Theorem, we have $1 = \zeta^n = (\cos(\varphi) + i \sin(\varphi))^n = (\cos(n\varphi) + i \sin(n\varphi)).$ Then $\cos(n\varphi) = 1$ and $\sin(n\varphi) = 0$. Therefore there exists some $m \in \mathbb{Z}$ such that $n\varphi = 2m\pi$. Now $\varphi = \frac{m}{n}$ $\frac{m}{n} \cdot 2\pi = m\theta_n.$ By Division Algorithm for the integers, there exist some $q, r \in \mathbb{Z}$ such that $m = qn + r$ and $0 \le r < n$. Then we have $\varphi = m\theta_n = (qn + r)\theta_n = qn\theta_n + r\theta_n = 2q\pi + r\theta_n$. Therefore $\zeta = \cos(\varphi) + i \sin(\varphi) = \cos(r\theta_n) + i \sin(r\theta_n) = \omega_n^r$.

8. Corollary (3).

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$ $\frac{n}{n}$. Define $\omega_n = \cos(\theta_n) + i \sin(\theta_n)$.

The polynomial $z^n - 1$ with indeterminate z is completely factorized as $z^n - 1 = (z - 1)(z - \omega_n)(z - \omega_n^2) \cdot ... \cdot (z - \omega_n^{n-1})$. Proof. Exercise. (Apply Factor Theorem.)

Remark. In fact, the polynomial $z^n - 1$ can be factorized as a product of finitely many quadratic polynomials with real coefficients

$$
z^2 - 2z\cos(\theta_n) + 1
$$
, $z^2 - 2z\cos(2\theta_n) + 1$, $z^2 - 2z\cos(3\theta_n) + 1$,...

and the linear polynomial $z - 1$ and, when n is even, also together with the linear polynomial $z + 1$. (The argument starts with the observation that $\omega_n^{-1} = \overline{\omega_n}$. Why? How?)

9. Definition.

Let *n* be a positive integer. Let w, ζ be complex numbers. ζ is said to be an *n*-th root of w if $\zeta^n = w$. **Remark.** ζ is an *n*-th root of w iff ζ is a root of the polynomial $z^n - w$ in the complex numbers.

10. Lemma (4).

Let *n* be a positive integer. Let w be a non-zero complex number. Suppose φ is an argument for w.

Then
$$
\zeta = \sqrt[n]{|w|} \left(\cos \left(\frac{\varphi}{n} \right) + i \sin \left(\frac{\varphi}{n} \right) \right)
$$
 is an *n*-th root of *w*.

Proof. Exercise. (Apply De Moivre's Theorem.)

11. Theorem (5).

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$ $\frac{n}{n}$. Define $\omega_n = \cos(\theta_n) + i \sin(\theta_n)$.

Let w *be a non-zero complex number, and* ζ *be an* n*-th root of* w *in the complex numbers.*

The n-th roots of w are the *n* complex numbers given by ζ , $\zeta \omega_n$, $\zeta \omega_n^2$, \cdots , $\zeta \omega_n^{n-1}$.

Remark. How to visualize these n numbers in terms of plane geometry? They are the n vertices of the regular n-sided polygon inscribed in the circle with centre 0 and radius $\sqrt[n]{|w|}$ in the Argand plane, with one vertex at the point ζ .

• Cubic roots:

• Quintic roots:

12. Proof of Theorem (5).

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$ $\frac{n}{n}$. Define $\omega_n = \cos(\theta_n) + i \sin(\theta_n)$.

- Let w be a non-zero complex number, and ζ be an n-th root of w in the complex numbers.
	- We have $\zeta^n = w$. For each $n = 0, 1, 2, \dots, n - 1$, we have $(\omega_n^k)^n = 1$. Then $(\zeta \omega_n^k)^n = \zeta^n (\omega_n^k)^k = 1 \cdot 1^k = 1$.
	- Let ρ be a complex number. Suppose ρ is an *n*-th root of w.

Then $\rho^n = w$. We have $\left(\frac{\rho}{\sigma}\right)$ ζ $\bigg\}^n = \frac{\rho^n}{\sqrt{n}}$ $\frac{\rho^n}{\zeta^n} = \frac{w}{w}$ $\frac{w}{w} = 1.$

Then $\frac{\rho}{\zeta}$ is an *n*-th root of unity. Therefore there exists some $r = 0, 1, 2, \dots, n-1$ such that $\frac{\rho}{\zeta} = \omega_n^r$. For the same r, we have $\rho = \zeta \omega_n^r$.

13. Corollary (6).

Let *n* be a positive integer. Write $\theta_n = \frac{2\pi}{n}$ $\frac{d}{n}$. Define $\omega_n = \cos(\theta_n) + i \sin(\theta_n)$. *Let* w *be a non-zero complex number, and* ζ *be an* n*-th root of* w *in the complex numbers. The polynomial* $z^n - w$ *with indeterminate* z *is completely factorized as*

$$
z^{n}-w=(z-\zeta)(z-\zeta\omega_{n})(z-\zeta\omega_{n}^{2})\cdot...\cdot(z-\zeta\omega_{n}^{n-1}).
$$

Proof. Exercise. (Apply Factor Theorem.)