






















7. Second Principle of Mathematical Induction.
The statement below is known as the Second Principle of Mathematical Induc-
tion (PMI2):
Let Q(n) be a predicate with variable n.
Suppose the statement Q(0) is true.
Further suppose that for any k ∈ N, if the statements Q(0), Q(1), · · · , Q(k) are true then
the statement Q(k + 1) is true.
Then the statement Q(n) is true for any n ∈ N.

Theorem (3).
The (First) Principle of Mathematical Induction (UPMI) is logically equivalent to the
Second Principle of Mathematical Induction (PMI2).
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8. Principle of Mathematical Induction in set language.
The Principle of Mathematical Induction (UPMI) can be re-formulated in terms of set
equality and subset relations.
(SPMI). Principle of Mathematical Induction, (set-theoretic formulation).
Let S be a subset of N.
Suppose 0 ∈ S.
Further suppose that for any k ∈ N, if k ∈ S then k + 1 ∈ S.
Then S = N.

Theorem (4).
The statements (UPMI), (SPMI) are logically equivalent to each other.
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Theorem (4).
The statements (UPMI), (SPMI) are logically equivalent to each other.

Proof of Theorem (4).
Argument for ‘(SPMI)=⇒(UPMI)’:

Assume (SPMI) holds:
∗ Let S be a subset of N. Suppose 0 ∈ S. Further suppose that for any k ∈ N, if k ∈ S

then k + 1 ∈ S. Then S = N.
[We want to deduce from this assumption ‘(SPMI) holds’ that (UPMI) holds.]
Let P (n) be a predicate with variable n. Suppose the statement P (0) is true. Further
suppose that for any k ∈ N, if the statement P (k) is true then the statement P (k + 1)

is true. [We want to deduce, by applying (SPMI), that for any n ∈ N, the statement
P (n) is true.]
Define S = {n ∈ N : P (n) is true}. [We now proceed to prove that S = N.]
• Since the statement P (0) is true, we have 0 ∈ S.

Pick any k ∈ N. Suppose k ∈ S. Then (by the definition of S) the statement P (k)

is true. Since P (k) is true, P (k + 1) is also true. Therefore (by the definition of S)
we have k + 1 ∈ S.
Now, by (SPMI), S = N.

It follows that for any n ∈ N, the statement P (n) is true.
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Theorem (4).
The statements (UPMI), (SPMI) are logically equivalent to each other.

Proof of Theorem (4). (Cont’d.)
Argument for ‘(UPMI)=⇒(SPMI)’:

Assume (UPMI) holds:
∗ Let P (n) be a predicate with variable n. Suppose the statement P (0) is true. Further

suppose that for any k ∈ N, if the statement P (k) is true then the statement P (k+1)

is true. Then the statement P (n) is true for any n ∈ N.
[We want to deduce from this assumption ‘(UPMI) holds’ that (SPMI) holds.]
Let S be a subset of N. Suppose 0 ∈ S. Further suppose that for any k ∈ N, if k ∈ S

then k + 1 ∈ S. [We want to deduce, by applying (UPMI), that N ⊂ S.]
• For any n ∈ N, denote by P (n) the proposition n ∈ S. [We now proceed to apply

mathematical induction to prove that for any n ∈ N, P (n) is true.]
By assumption, 0 ∈ S. Then P (0) is true.
Let k ∈ N. Suppose P (k) is true. Then k ∈ S. By the assumption on S, since
k ∈ S, we also have k + 1 ∈ S. Therefore P (k + 1) is true.
By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

We have verified that every element of N is an element of S. Then N ⊂ S.
By definition S ⊂ N. Hence S = N.
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The Second Principle of Mathematical Induction (UPMI) can also be re-formulated in
terms of set equality and subset relations.

(SPMI2). Second Principle of Mathematical Induction, (set-theoretic
formulation).
Let U be a subset of N.
Suppose 0 ∈ U .
Further suppose that for any k ∈ N, if 0, 1, 2, · · · , k ∈ U then k + 1 ∈ U .
Then U = N.

Theorem (5).
The statements (PMI2), (SPMI2) are logically equivalent to each other.
Proof of Theorem (5). Exercise. (The argument is similar to that for Theorem
(4).)
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9. Theorem (6).
The Well-ordering Principle for integers (WOPI), the (set-theoretic formulation of the)
Principle of Mathematical Induction (SPMI), the (set-theoretic formulation of the) Second
Principle of Mathematical Induction (SPMI2) are logically equivalent.

Outline and ideas on proof of Theorem (6).
Argument for ‘(WOPI)=⇒(SPMI)’:
• Suppose the statement (WOPI) holds.

Let T be a subset of N. Suppose 0 ∈ T . Further suppose that for any n ∈ N, if k ∈ T

then k + 1 ∈ T .
By definition, T ⊂ N. We verify that N ⊂ T , with the method of proof by contradiction.

[Idea. Suppose it were true that N ⊂/ T . We look for a contradiction.
By assumption, there would exist some x0 ∈ N such that x0 /∈ T .
Define S = {x ∈ N : x /∈ T}. Since x0 ∈ S, we would have S ̸= ∅.
(WOPI) would tell us that S had a least element, say, λ. By studying the number λ,
we will come to a desired contradiction.
We will be forced to conclude that N ⊂ T in the first place.]

Since T ⊂ N and N ⊂ T , we have T = N.
It follows that the statement (SPMI) holds.
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Theorem (6).
The Well-ordering Principle for integers (WOPI), the (set-theoretic formulation of the)
Principle of Mathematical Induction (SPMI), the (set-theoretic formulation of the) Second
Principle of Mathematical Induction (SPMI2) are logically equivalent.

Outline and ideas on proof of Theorem (6).
Argument for ‘(SPMI)=⇒(SPMI2)’:
• Suppose that the statement (SPMI) holds.

Let U be a subset of N. Suppose that 0 ∈ U . Further suppose that for any k ∈ N, ifJ0, kK ⊂ U then k + 1 ∈ U .
By definition, U ⊂ N. We verify that N ⊂ U :

[Idea. Define T = {x ∈ N : J0, xK ⊂ U}.
Apply (SPMI) to deduce that T = N.
Now ask: Is it true that every element of T an element of U? If yes, then it follows
that N ⊂ U , and furthermore N = U .]

It follows that the statement (SPMI2) holds.
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Theorem (6).
The Well-ordering Principle for integers (WOPI), the (set-theoretic formulation of the)
Principle of Mathematical Induction (SPMI), the (set-theoretic formulation of the) Second
Principle of Mathematical Induction (SPMI2) are logically equivalent.

Outline and ideas on proof of Theorem (6).
Argument for ‘(SPMI2)=⇒(WOPI)’:
• Suppose that the statement (SPMI2) holds.

Let S be a non-empty subset of N. We verify that S has a least element with the
method of proof by contradiction:

[Idea. Suppose it were true that S did not have a least element. We look for a
contradiction.
Define U = N\S.
We verify that 0 ∈ U , and that for any k ∈ N, if J0, kK ⊂ U then k + 1 ∈ U .
(SPMI2) would then imply that U = N. It would then follow that S = ∅: this is the
desired contradiction.]

It follows that the statement (WOPI) holds.
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10. Further examples of statements which may be proved using mathematical
induction.

(a) Binomial Theorem for numbers.
Let a, b be any numbers.
For any n ∈ N,

(a + b)n = an +

(
n

1

)
an−1b +

(
n

2

)
an−2b2 + · · ·

+

(
n

k

)
an−kbk + · · · +

(
n

n− 1

)
abn−1 + bn.

(b) Leibniz’s Rule (on repeated differentiation for products of functions).
Suppose g, h are real-valued functions of one real variable which are n-times differen-
tiable at a. Then g · h is n-times differentiable at a and

(g · h)(n)(a)

= g(a)h(n)(a) +

(
n

1

)
g′(a)h(n−1)(a) +

(
n

2

)
g′′(a)h(n−2)(a) + · · ·

+

(
n

k

)
g(k)(a)h(n−k)(a) + · · · +

(
n

n− 1

)
g(n−1)(a)h′(a) + g(n)(a)h(a).
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(c) Remainder Theorem and Factor Theorem ‘combined’
Let n ∈ N\{0}. Let f (x) be a polynomial of degree n. Suppose α is a number. Then
there exists some unique polynomial g(x) of degree n− 1 such that

f (x) = (x− α)g(x) + f (α)

as polynomials.

Remark. The Remainder Theorem and the Factor Theorem that you learnt in
school maths are immediate consequences of this result:
• Remainder Theorem.

Let f (x) be a polynomial. Let α be a number.
The remainder of f (x) upon division by x− α is f (α).

• Factor Theorem.
Let f (x) be a polynomial. Let α be a number.
f (x) is divisible by x− α iff f (α) = 0.

(d) Generalized Triangle Inequality (on the complex plane).

Let n ∈ N\{0, 1}. Suppose µ1, µ2, · · · , µn ∈ C. Then

∣∣∣∣∣∣
n∑

j=1

µj

∣∣∣∣∣∣ ≤
n∑

j=1

|µj|.
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(e) Existence Theorem for row equivalence to reduced row echelon forms.
Let p, q be positive integers. Suppose A is a (p×q)-matrix with real entries. Then there
exists some (p × q)-matrix with real entries B such that B is a reduced row echelon
form and A is row equivalent to B.
Remark. The corresponding ‘uniqueness result’ can also be proved with the help
of mathematical induction.

(f) Fundamental Theorem of Arithmetic.
Let n ∈ N\{0, 1}. The statements below hold:

(1) n is a prime number or a product of several prime numbers.
(2) Let p1, p2, · · · , ps, q1, q2, · · · , qt be prime numbers. Suppose 0 < p1 ≤ p2 ≤ · · · ≤ ps

and 0 < q1 ≤ q2 ≤ · · · ≤ qt. Further suppose n = p1p2 · ... · ps and n = q1q2 · ... · qt.
Then s = t and p1 = q1, p2 = q2, ... , ps = qs.
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