1. Undefined notions: ‘set’, ‘belong to’, ‘element’.

Unexplained statements which have the same meaning;:

 ‘x belongs to the set A’
 ‘r is an element of A’

e ‘A contains z as an element’.

At this level we allow heuristics to take over.

Short-hand for ‘x is an element of A’

re A
Short-hand for ‘x is not an element of A’

‘x g A

Everything else in set language is defined in terms of these notions.



2. Heuristic understanding of the notions of ‘set equality’, ‘subset rela-
tion’. |
(a) Any two sets A, B are equal to each other as sets exactly when:
e cach of A, B contains as its elements every element of the other.
We write
A=DB.
(b) Given any two sets A, B, A is a subset of B exactly when:
e cvery clement of A is an element of B. < Moz M‘j , bk moe W’*JX‘JL }QW‘“X‘\* W .
/WWWW

In this situation we write (?w O ,"(\’j"at X if XGA the.  X€,
ACB. \[sudRaw (& O%WW\ '.
Some people’s convention: ‘A C B’. | R eiwf\/ _cﬂoJe,c‘C X, Wl e,
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Reminder: When A = B holds, it will happen that A C B also holds.



3. ‘Small’ sets.

When a set has ‘finitely many’ elements, we may list every one of them exhaustively:

e The symbol ‘{’ signifies the beginning of the list of elements.
e The symbol ‘}’ signifies the end of the list of elements.

Example.

e Suppose *, *, 1, b, [ are the only elements of U
This set may be expressed as {, *, , b, b}, <

Newr write Lo wa Ok %% b 4) DX 4bn]

Conventions.

1. ‘Repetition in the list” does not count.
Example:
o {8 b, b,b,b} = {,b,1}

2. ‘Ordering in the list” does not matter.

Example:

o {§,b,5} = {b, 8,1} = {1,b, 4}

The set which has no element is called the empty set. We denote this set -by 0.



4. Method of Specification.
Many a set cannot be presented as a list, because it is not ‘small’.

Even though a set may be presented as an list, for one reason or other we may choose
not to do so.

Examples:

1. Consider the collection
‘0,1,4,9,16,25,36,---"
[s it apparent that it refers to the collection of all square integers?

But why can’t it be understood as the collection of 0, 1,4, 9, 16, 25 and the integers
no less than 367

2. Consider the collection
1 357 1 245
£17273747'”; PR R b T e S St SR A
2°2°2°2 3’333
[s it apparent that it refers to the collection of all rational numbers? Or is it not?

)

Can you conceive a better list than this one?

Or is it desirable to describe the collection of all positive rational numbers in this
way”?



When it is impossible or undesirable to present a set by exhaustively listing every
element of the set, we may try the Method of Specification.

In such a set presented witht the Method of Specification, its elements are:

e those objects, and those alone, which turn a predicate ‘used for describing that
set’ into a true statement.

Recall:

e A predicate with variables x,y, z, - - - is a statement ‘modulo’ the ambigu-
ity of possibly one or several variables x,y, z,---. Provided we have specified
x,y,z,--- in such a predicate, it becomes a statement, for which it makes sense
to say it is true or false.



Suppose A is a set, and P(x) is a predicate with variable x.

1. {x | P(z)} refers to the set (if it is indeed a set) which contains exactly every

object x | 1
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e for which the statement P(x) is true. Ce PO s
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2. {x € A: P(z)} refers to the set which contains exactly every object z

e which is an element of the given set A and

e for which the statement P(z) is true.

By definition it is a subset of A. SQA sk PO 1 Trwe .
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5. Examples on Method of Speciﬁcation.'

(a) {z |z =%orz=xorz=forz=>borz=1l}={xx*Hbl} as sets.
Lthn o o pedicsle witl @riable x . |
(b) What is the set {z 6@: z? — 3z + 2 =0} in plain words?

K%&:Xm;a‘: 0& the éfwﬂ(m X 3x+2+ O
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(c) What are the sets below in plain words?
i) {r e R:z*+1=0}. .
§&¢m\gjc%~&L&vﬁxx/xﬂw=Q with knne x W R

\(L\D O the %Ptj ﬁ .

(ii) {z € C: 2>+ 1 = 0}. ‘
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Remark. But how about {z | 4+ 1=0}7 &Lﬁgmw : ¢ {L “Li
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(d) Heuristically describe the set {z € R: \/z € N}.

(reR:zeN = {0,1,4,9,16,--- ,n? (n+1)%- -}

We have eliminated the annoying dots.

{ 2 YN
How to see the answer? Ask: Hingnitis e hal fw ™ ,

| - the demeds Jy e &KX (%),
o If z € R and /x € N, what can x be? - f

Now collect all such z’s.
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(d”) What about these sets below?

(i) {= € R: There exists some@such that. L?_‘l i

(ii) {z € R : z = n? for some n € N}. Voxtoun oobuse (\)le ;i ;/1 i/z |
(iii) {z | z = n* for some n € N}. Zi(: fﬁﬁm <8 = - 3
Each of them is the same as {0,1,4,9,16,--- ,n% (n+1)%---}. R A, dewists 4 "-:;J

Because of (iii), we also accept this set to be expressed as {@l(n‘é N}

x| x=@§w6§7@1



(d”) What about {z € Z : There exists some@such that ?
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This is the same as {0,2,--- ,m®+m,(m+ 1) +m+1,---}. <
(d”") What about {x € R : z = n? for any n € N}7

Tnspect the predicate ‘z = n? for any n € N’. Ask:

e If the ‘substitution’ x = xg ‘turns’ this predicate into a true statement, what

happens next? ’BW DeN, X, =0 =O.

’ 2

%W/ (€N/ Ko = = (
Ther o = %o = | (dedidlins oviitn .

This is the empty set.

(e) Heuristically describe the set {z | = 3™5" for some m,n € N}.
This is the same as {1,3,9,27,-+- ;5,15,45,- -+ ;25,75,225,- -+ ;... }.
Remark. We also accept this set to be expressed as {3™5™ | m € N and n € N}.



(f) How to apply the Method of Spemﬁcatlon to express 0,3,6,---,3n,3n + 3, -

A A
as a set”? | C%L i {
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There are many correct answers. Each of them refer to the same set.

O{Sn\n6®}, o {z € Z:x=3n forsomen € N},

e {z | x = 3n for some n € N}, o {zeN:z/3 €N}

G =6 -3 © 3 § - 3n-6 3w-3 -
30-0 301-2) 3G-) 36~ z)}(h) 30h) 3m-) -

(") How about the collection —6, —3,0, 3,6, - Cij:i_t?\ ?_,4_\

There are many correct answers. Fach of them refer to the same se

o {3(n—2) | nlé@}, o {zeZ:x=3(n—2) for some n € N},
o {z|z=3n~—2)forsomene N}, e{zecZ:(xr+6)/3€N}

| (f”) How about the collection - - -, —6,-3,0, 3,6, - ?
There are many correct answers. FEach of them refer to the same set.

e {3n|neZj, o {z €Z:x=3nforsomen € Z},
o {z | x = 3n for some n € Z}, e {x€Z x/3€Z}



(g) When there are many solutions for a given equation, the method of specification
may be useful in the presentation of all solutions in the form of a ‘solution set’.

What is the set of all real solutions of the equation sin(x) = 0 with unknown 7
o {nrw | neZ}
e {xr € R:x=nmfor somen € Z}.
Remark. This is another way to ask for the
‘general solution of the equation sin(z) = 0 with unknown x in IR’
When we give the answer as
‘r = nm where n Is an arbitrary integer’,

what we actually mean is:

‘x = «a is a real solution of this equation in R iff (¢ = nw for somen € Z).

(g’) What is the set of all real solutions of the equation sin(x) = 5 with unknown 7
T
. {mTJr(—l)"-g ‘ n € Z},

o{azeIR:a::mrJr(—l)"-%forsomenEZ}.



(h) What is the set of all real solutions of the system of equation

2

331—5332+3333:1
(S>< 2331—4332—|— 33'3:0

Tr1 + 332—233'3:—1

with unknown x1, 9, x3 in IR?

([ —2/3+(7/6)t
o< | —1/3+(5/6)t teR 3,

t
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L1 There exists some t € IR such that
° T 2 7 1 5 > .
) ° r1=—+-tand o= —=+-tand x3=1t¢
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Remark. What we are saying, without using the jargon of set language, is that
X1

4

xo | is a solution of the system (S) iff there exists some t € IR such that

X3

2+7t d 1+5t d £
rH = —— —U ana ro = —— —U anda Ira = 1.
! 36 2 36 ’



(h”) The method of specification is used extensively in constructions in linear algebra.

Below are the simplest examples:

e Let H be a (m x n)-matrix with real entries.
The null space of H is

{xe€R": Hx =0.}.
e Let H be a (m x n)-matrix with real entries.
The column space of H is

. There exists some x € IR”
y € R™: :
such that y = Hx.

e Let V be a subspace of R".
The orthogonal complement of V' is

{y e R": (x,y) =0 for any x € V.}.

Each of them can be generalized in a natural way with the help of notion of linear
transformation.



(i) What is the set {z | = # x}7
This is the empty set.

Reason? S S ‘JCW()@ Nno makte- ot x S

Warning. We can formally construct, using the method of specification, the objects

{z |z =2}, {z |z ¢}
We would expect these objects to be sets. However, it will turn out that they

cannot be ‘reasonably regarded as sets’, if we are to insist that all sets are to obey
certain laws which look natural and which govern their behaviour.



6. Definitions of the basic set operations, with the help of the Method

of Specification.
Let A, B be sets.

(a) The intersection of the sets A, B is defined to be the set
{z |z € Aand z € B}.

(b) The union of the sets A, B is defined to be the set
{r |z e Aorx e B}.

(A\B) U (B\A).

They are denoted by AN B, AU B, A\B, AAB respectively.



7. Formal definition of the notions of ‘set equality’, ‘subset relation’.
Recall: any two sets A, B are equal to each other as sets exactly when

‘each of A, B contains as its elements every element of the other’.
Same the above, but more clumsy:

‘every clement of A is an element of B and every element of B is an element of A’.

Formal definition for the notion of ‘set equality’:

e Let A, B be sets. A is said to be equal to B if both of the following statements

(1), (1) hold:
(1) For any object z, [if (z € A) then (x € B)].
(1) For any object y, [if (y € B) then (y € A)].

We write A = B.

Formal and clumsy though it looks, it is safest to proceed from this definition when
we are doing calculations or giving some proofs.



Formal definition for the notion of ‘subset relation’:
e Let A, B be sets. A is said to be a subset of B if the following statement (7)
holds:
(1) For any object z, [if (x € A) then (z € B)).
We write A C B (or B D A).



8. Properties of the basic set operations.

Theorem (I). The following statements hold:

(1) Let A be a set. A C A.
(2) Let A, B be sets. A= B iff [[AC B) and (B C A)].
(3) Let A, B,C be sets. Suppose A C B and B C C. Then A C C.

Theorem (II). Let A, B be sets. The following statements hold:

(1) AnBCA. (4) ACAUB.
(2) ANBCB. (b)) B CAUB.
3) A\BCA.

Theorem (III). Let A be a set. The following statements hold:

(1) 0cA. (5) O\A=0.
2) And=10. (6) AAD=A.
3) AuUl=A (1) AAA=10
(4) A\ = A.



Theorem (IV). The following statements hold:

(1) Let A, B, S be sets. Suppose S C A and S C B. Then S C AN B.
(2) Let A, B, S be sets. Suppose S C Aor S C B. Then S C AUB.
(3) Let A, B, T be sets. Suppose ACT and B CT. Then AUB CT.
(4) Let A, B, T be sets. Suppose ACT or BCT. Then ANB CT.

Theorem (V). Let A, B,C be sets. The following statements hold:

(1) ANA=A (1) AUA=A.

(2) ANnB=BNA. (2) AUB=BUA.

3) (AnB)NC=An(BnNC). (3) (AuB)UC =AU (BUC).
(4) (ANBUC=(AuC)N(BUC). (4) (AuBNC=(ANC)U(BNC).
(5) (ANBN\C =(A\O)N(B\C). (5) (AUB\C=(A\C)U(B\C).
(6) A\(BNC)=(A\B)U(A\C). (67) A\(BUC)=(A\B)nNA\C).
(7) AAB=(AUB)\(ANB).

(8) AAB = BAA.

(9) (AAB)AC = AA(BAC).



