MATH1050 Quadratic polynomials

0. You are supposed to have a lot of practical experience in the handling of polynomial expressions, linear/quadratic functions, linear/quadratic equations in school mathematics. You are supposed to be familiar with the notion of real-valued functions of one-real variable in school mathematics.

1. Definition. (Linear and quadratic polynomials.)

Let a, b, c be numbers. Consider the formal sum $ax^2 + bx + c$.

- (a) Suppose $a \neq 0$. Then this formal sum is called a quadratic polynomial with indeterminate x.
- (b) Suppose a = 0 and $b \neq 0$. Then this formal sum is called a linear polynomial with indeterminate x.
- (c) Suppose a = b = 0. Then this formal sum is called a constant polynomial.

Remark. Such a formal sum $ax^2 + bx + c$ is a special instance of some more general objects known as polynomials with one indeterminate.

Terminology and convention.

- Notations. For convenience, we agree to use the functional notation (such as f(x), g(x), h(x)) for denoting such polynomials.
- Equality for polynomials. Suppose $f(x) = ax^2 + bx + c$, $g(x) = a'x^2 + b'x + c'$ are polynomials. We agree to declare that f(x) is the same as g(x) exactly when a = a', b = b' and c = c'. In this situation We write f(x) = g(x) as polynomials.

Further remark. We take for granted what we have been told at school about addition, subtraction and multiplication for polynomials:

- * $(ax^2 + bx + c) + (a'x^2 + b'x + c') = (a + a')x^2 + (b + b')x + (c + c')$ whenever a, b, c, a', b', c' are real numbers.
- * $A(ax^2 + bx + c) = (Aa)x^2 + (Ab)x + (Ac)$ whenever a, b, c, A are real numbers.
- * $(bx+c)(b'x+c') = (bb')x^2 + (bc'+b'c)x + cc'$ whenever b, c, b', c' are real numbers.

Note that each of the equalities above is an equality for polynomials; they should be understood in the sense that the respective coefficients in the polynomials of the two sides of the symbol '=' agree with each other. (In school maths textbooks, the words *identical as polynomials, polynomial identities* are used instead of *equal as polynomial, polynomial equalities* here.)

2. Definition. (Roots of linear and quadratic polynomials.)

Let f(x) be a linear or quadratic polynomial, given by $f(x) = ax^2 + bx + c$. Let α be a number.

Suppose that upon the substitution of the indeterminate x in f(x) by ' $x = \alpha$ ', we obtain the equality (of numbers) $a\alpha^2 + b\alpha + c = 0$. Then we say α is a root of f(x).

Terminology and convention.

- Notations. For convenience, we agree to write $f(\alpha) = 0$ here exactly when α is a root of f(x).
- If α is a real number, we say that α is a root of f(x) in \mathbb{R} . If α is a complex number, we say that α is a root of f(x) in \mathbb{C} . In general, if α is a number amongst a specific collection of numbers, say, so-and-so, then we say that α is a root of f(x) in so-and-so.

3. Theorem (1). (Roots of quadratic polynomials with real coefficients.)

Let a, b, c be real numbers, with $a \neq 0$. Let α be a number. Let f(x) be the quadratic polynomial given by $f(x) = ax^2 + bx + c$.

- (a) Suppose α is a root of f(x). Let β = -b/a α. Then the statements below hold:
 i. f(x) = a(x α)(x β) as polynomials.
 - i. $f(x) = a(x \alpha)(x \beta)$ as polynomials ii. β is a root of f(x). iii. $\alpha\beta = \frac{c}{a}$.
- (b) Define $\Delta_f = b^2 4ac$. We call Δ_f the discriminant of the polynomial f(x). Then the statements below hold:
 - i. $f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 \frac{\Delta_f}{4a^2} \right]$ as polynomials.

(This polynomial equality is referred as 'completing the square for the quadratic polynomial f(x)'.)

ii. Suppose $\Delta_f \ge 0$. Define $\alpha_{\pm} = \frac{-b \pm \sqrt{\Delta_f}}{2a}$ respectively. Then $f(x) = a(x - \alpha_+)(x - \alpha_-)$ as polynomials. $-b + i_1 \sqrt{-\Delta_f}$

iii. Now suppose
$$\Delta_f < 0$$
 instead. Define $\zeta = \frac{-1}{2a}$. Then $f(x) = a(x-\zeta)(x-\overline{\zeta})$ as polynomials.

Proof. Exercise in school maths.

Remark. What Theorem (1) says is that each quadratic polynomial with real coefficients f(x) has a pair of roots and 'factorizes into linear polynomials'. Moreover, if the polynomial f(x) is given by $f(x) = ax^2 + bx + c$ and the pair of roots concerned are α, β , then $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$. Furthermore, regarding the quadratic equation

$$ax^2 + bx + c = 0 \quad --- \quad (\star)$$

with unknown x, there are exactly three mutually exclusive possibilities:

- (1) Suppose $\Delta_f > 0$. Then the equation (*) has exactly two distinct solutions amongst the real numbers.
- (2) Suppose $\Delta_f = 0$. Then the equation (\star) has exactly one repeated solution amongst the real numbers.
- (3) Suppose $\Delta_f < 0$. Then the equation (*) has exactly two solutions, themselves complex conjugates of each other, amongst the complex numbers (but outside the reals).

In any case, the equation (\star) has at least one solution amongst the complex numbers.

4. Real-valued functions of one real variable defined by linear/quadratic polynomials.

Definition. (Affine linear functions.)

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a (real-valued) function (of one real variable). Then f is said to be a(n) (affine) linear function if there exist some $b, c \in \mathbb{R}$ such that f(x) = bx + c for any $x \in \mathbb{R}$.

Remark. Hence the 'formula of definition' of such a function *f* is given by a linear polynomial with real coefficients.

Further remark on coordinate geometry. The graph y = f(x) of such a linear function f is given by the 'infinite straight line' y = bx + c.

Definition. (Quadratic functions.)

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a (real-valued) function (of one real variable). Then f is said to be a quadratic function if there exist some $a, b, c \in \mathbb{R}$ such that $a \neq 0$ and $f(x) = ax^2 + bx + c$ for any $x \in \mathbb{R}$.

Remark. Hence the 'formula of definition' of such a function f is given by a quadratic polynomial with real coefficients.

Further remark on coordinate geometry. The graph y = f(x) of such a quadratic function f is a curve known as the parabola (on the coordinate plane). The point $\left(-\frac{b}{2a}, -\frac{\Delta_f}{4a}\right)$, where the quadratic function f attains absolute extrema and where f 'changes from' being strictly increasing/decreasing to strictly decreasing/increasing, is known as the vertex of the parabola y = f(x).

5. Strict monotonicity for quadratic functions with real coefficients of one real variable. Definition. (Strict monotonicity.)

Let I be an interval, and $h: D \longrightarrow \mathbb{R}$ be a function with domain D which contains I entirely.

- (a) h is said to be strictly increasing on I if for any $s, t \in I$, the inequality h(s) < h(t) holds.
- (b) h is said to be strictly decreasing on I if for any $s, t \in I$, the inequality h(s) > h(t) holds.

Theorem (2). (Strict monotonicity for quadratic functions.)

Let $a, b, c \in \mathbb{R}$, with $a \neq 0$. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the quadratic function given by $f(x) = ax^2 + bx + c$ for any $x \in \mathbb{R}$.

- (a) Suppose a > 0. Then f is strictly decreasing on $(-\infty, -\frac{b}{2a}]$ and strictly increasing on $[-\frac{b}{2a}, +\infty)$.
- (b) Suppose a < 0. Then f is strictly increasing on $(-\infty, -\frac{b}{2a}]$ and strictly decreasing on $[-\frac{b}{2a}, +\infty)$.

Proof. Exercise. (Outline of argument. Start by factorizing the expression f(s) - f(t), extracting the factor s - t. Then ask what may be said of the number f(s) - f(t) under the assumption s < t < -b/(2a). Et cetera.)

Remark on geometric interpretation. Suppose a > 0. Then the curve y = f(x) will 'drop and drop' as the value of x increases from the 'negative infinity' to $-\frac{b}{2a}$, and will 'rise and rise' as the value of x increases from $-\frac{b}{2a}$ to the 'positive infinity'.

6. Absolute extrema for quadratic functions with real coefficients of one real variable. Definition. (Absolute extrema.)

Let I be an interval, and $h: D \longrightarrow \mathbb{R}$ be a function with domain D which contains I entirely. Let p be a point in I.

- (a) h is said to attain absolute maximum at c on I if for any $x \in I$, the inequality $h(x) \leq h(c)$ holds. The number h(c) is called the absolute maximum value of h on I.
- (b) h is said to attain absolute minimum at c on I if for any $x \in I$, the inequality $h(x) \ge h(c)$ holds. The number h(c) is called the absolute minimum value of h on I.

Theorem (3). (Absolute extrema for quadratic functions.)

Let $a, b, c \in \mathbb{R}$, with $a \neq 0$. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the quadratic function given by $f(x) = ax^2 + bx + c$ for any $x \in \mathbb{R}$. Denote the discriminant of f(x) by Δ_f .

- (a) Suppose a > 0. Then f attains absolute minimum at $-\frac{b}{2a}$ on \mathbb{R} , with absolute minimum value $-\frac{\Delta_f}{4a}$.
- (b) Suppose a < 0. Then f attains absolute maximum at $-\frac{b}{2a}$ on \mathbb{R} , with absolute maximum value $-\frac{\Delta_f}{4a}$.

Proof. Exercise. (The key of the argument is in making use of 'completing the square'.)

Remark on geometric interpretation. Suppose a > 0. Then the curve y = f(x) will 'touch the bottom' as the value of x, varying amongst all positive real numbers, reaches $-\frac{b}{2a}$.

Corollary to Theorem (3).

Let $a, b, c \in \mathbb{R}$. Suppose a > 0, $\Delta_f = b^2 - 4ac$, and $f : \mathbb{R} \longrightarrow \mathbb{R}$ is the quadratic polynomial function defined by $f(x) = ax^2 + bx + c$ for any $x \in \mathbb{R}$.

Then the statements (\dagger) , (\ddagger) are logically equivalent:

(†) $f(x) \ge 0$ for any $x \in \mathbb{R}$.

$$(\ddagger) \quad \Delta_f \le 0.$$

Equality in (‡) holds iff $-\frac{b}{2a}$ is a repeated real root of the polynomial f(x). **Remark.** This result will play a key role in the proof of the Cauchy-Schwarz Inequality.

Proof of Corollary to Theorem (3).

Let $a, b, c \in \mathbb{R}$. Suppose a > 0, $\Delta_f = b^2 - 4ac$, and $f : \mathbb{R} \longrightarrow \mathbb{R}$ is the quadratic polynomial function defined by $f(x) = ax^2 + bx + c$ for any $x \in \mathbb{R}$.

By Theorem (3), f attains the absolute minimum at $-\frac{b}{2a}$, with $f(-\frac{b}{2a}) = -\frac{\Delta_f}{4a}$.

- $[(\dagger) \Longrightarrow (\ddagger)?]$ Suppose $f(x) \ge 0$ for any $x \in \mathbb{R}$. Note that $-\frac{b}{2a} \in \mathbb{R}$. Then, by assumption, we have $0 \le f(-\frac{b}{2a}) = -\frac{\Delta_f}{4a}$. Since a > 0, we have -4a < 0. Then $\Delta_f = -4a \cdot \left(-\frac{\Delta_f}{4a}\right) \le 0$.
- $[(\ddagger) \Longrightarrow (\dagger)?]$

Suppose $\Delta \leq 0$. Then, since a > 0, we have $-\frac{\Delta_f}{4a} \geq 0$. Pick any $x \in \mathbb{R}$. We have $f(x) \geq f(-\frac{b}{2a}) = -\frac{\Delta_f}{4a} \geq 0$.

By Theorem (1), $\Delta_f = 0$ iff $-\frac{b}{2a}$ is a repeated real root of the polynomial f(x).

7. Strict convexity/concavity for quadratic functions with real coefficients of one real variable. Definition. (Strict convexity/concavity.)

Let I be an interval, and $h: D \longrightarrow \mathbb{R}$ be a function with domain D which contains I entirely.

- (a) h is said to be strictly convex on I if for any $p, q \in I$, for any $\lambda \in (0,1)$ the inequality $h((1 \lambda)p + \lambda q) < (1 \lambda)h(p) + \lambda h(q)$ holds.
- (b) h is said to be strictly concave on I if for any $p, q \in I$, for any $\lambda \in (0,1)$ the inequality $h((1 \lambda)p + \lambda q) > (1 \lambda)h(p) + \lambda h(q)$ holds.

Theorem (4). (Strict convexity/concavity of quadratic functions.)

Let $a, b, c \in \mathbb{R}$, with $a \neq 0$. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the quadratic function given by $f(x) = ax^2 + bx + c$ for any $x \in \mathbb{R}$.

- (a) Suppose a > 0. Then f is strictly convex on \mathbb{R} .
- (b) Suppose a < 0. Then f is strictly concave on \mathbb{R} .

Proof. Exercise. (Nothing but a tedious computation.)

Remark on geometric interpretation. Suppose a > 0. Join any two points on the curve y = f(x) by a line segment, and it will happen that every point on the curve 'between' these two points will be 'below' the the point with the same x-coordinate in the line segment. An equivalent description is that a variable point on the curve y = f(x) 'moving' from the 'negative infinity' to the 'positive infinity' will be 'turning left' all the way.

8. Appendix. Beyond school maths: complex-valued linear/quadratic functions of one complex variable.

Suppose a, b, c are complex numbers, and f(z) the polynomial with indeterminate z given by $f(z) = az^2 + bz + c$. For each complex number α , upon the substitution of the indeterminate z in f(z) by ' $z = \alpha$ ', we obtain the complex number $a\alpha^2 + b\alpha + c$ (which is uniquely determined by the value of α). This way of assigning complex numbers to complex numbers defines a 'complex-valued function of one complex variable' whose domain is \mathbb{C} and whose range is also \mathbb{C} . For convenience, we also denote such a function by the symbol f (with which we label the polynomial $az^2 + bz + c$). When a = 0, we refer to this function as a(n) (affine) linear function from \mathbb{C} to \mathbb{C} . When $a \neq 0$, we refer to this function as a quadratic function from \mathbb{C} to \mathbb{C} . Such a function is a simple example of functions beyond what we saw in school maths.