
MATH1050 Basic results on complex numbers ‘beyond school mathematics’

1. In school mathematics we have tacitly accepted that it makes sense to talk about complex numbers.
Each such number is a mathematical object of the form a+ bi, in which a, b are some real numbers, and i is a ‘special
number’ satisfying the relation i2 = −1.
We have accepted that it makes sense to talk about sums, differences, products, and quotients for such numbers:

• Let a, b, c, d be real numbers. Consider the complex numbers a+ bi, c+ di.
(a) We define the sum of a+ bi and c+ di as (a+ c) + (b+ d)i.
(b) We define the difference of a+ bi from c+ di as (a− c) + (b− d)i.
(c) We define the product of a+ bi and c+ di as (ac− bd) + (ad+ bc)i.

(d) Provided that c ̸= 0 or d ̸= 0, we define the quotient of a+ bi by c+ di as ac+ bd

c2 + d2
+

−ad+ bc

c2 + d2
i.

We tacitly assumed that these ‘arithmetic operations’ obey the ‘usual laws of arithmetic’ which hold for real numbers.
Based on this understanding and what we have learnt in Euclidean plane geometry (and plane coordinate geometry
and plane vector geometry), we are going to develop further definitions and results on complex numbers.

2. Definition.
Let z be a complex number. Denote the real part and the imaginary part of z by Re(z), Im(z) respectively. (So
z = Re(z) + iIm(z).)

• The complex conjugate of z is defined to be the complex number Re(z)− iIm(z). It is denoted by z.
• The modulus of z, denoted by |z|, is defined to be the non-negative real number

√
(Re(z))2 + (Im(z))2.

3. Theorem (1).
Let z, w be complex numbers. The statements below hold:

(1) Re(z) = z + z

2
and Im(z) =

z − z

2i
.

(2) Re(z) = Re(z), Im(z) = −Im(z) and |z| = |z|.
(3) z = z.
(4) Re(z + w) = Re(z) + Re(w) and

Im(z + w) = Im(z) + Im(w).
(5) Re(zw) = Re(z)Re(w)− Im(z)Im(w) and

Im(zw) = Re(z)Im(w) + Im(z)Re(w).
(6) z + w = z + w and zw = z̄w̄.

(7) |z|2 = zz.

(8) |zw| = |z||w|.

(9) |Re(z)| ≤ |z| and |Im(z)| ≤ |z|.

(10) |Re(zw)| ≤ |z||w|.

(11) |z + w| ≤ |z|+ |w| and ||z| − |w|| ≤ |z − w|.

(12) |z + w|2 + |z − w|2 = 2|z|2 + 2|w|2.

Proof. Exercise. (Straightforward manipulation.)

4. Complex numbers and Euclidean plane geometry.
Each complex number z may be thought of as the point on the ‘infinite plane’, known in this context as the Argand
plane, with rectangular coordinates (Re(z), Im(z)).
We refer to the point (Re(z), Im(z)) simply as ‘the point z’.
|z| is the (Euclidean) distance between 0 and z. It is also the length of the vector ‘pointing from 0 to z’.
z is the point obtained by reflecting the point z with respect to the ‘real axis’. (How about −z, −z?)

real axis

imaginary axis

0

z

z−z

−z

Re(z)−Re(z)

iIm(z)

−iIm(z)
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Remark. The basic definitions and results concerned with the arithmetic of complex numbers, together with all
results in Theorem (1), can be given geometric interpretation on the Argand plane.
Further remark. The basic definitions, such as collinearity, perpendicularity and parallelism, and results in
Euclidean plane geometry can be expressed in terms of complex numbers.

5. Theorem (2). (Geometric interpretation of addition.)
Let z, w be distinct non-zero complex numbers. The points 0, z, w, z+w are the vertices of a parallelogram in which:

• the line segment joining 0 and z is parallel to the line segment joining w and z + w,
• the line segment joining 0 and w is parallel to the line segment joining z and z + w, and
• the line segment joining z and w and the line segment joining 0 and z + w are diagonals.

real axis

imaginary axis

0

z

w

z + w

Proof. Exercise in coordinate geometry (or vector geometry) in school maths.
Remarks.
(a) Hence the relation |z + w|2 + |z − w|2 = 2|z|2 + 2|w|2 is known as the paralellogramic identity in this context.
(b) We may further interpret ‘adding z by w’ as: translating the line segment joinint 0 to z to the line segment

joining w and z + w via parallelism.
(c) Can you provide a geometric interpretation for the inequality |z + w| ≤ |z| + |w|? (It is called the Triangle

Inequality.)

6. Corollary to Theorem (1). (Geometric interpretation of subtraction.)
Let u, v be distinct non-zero complex numbers. The point u− v is the number so that 0, v, u− v, v forms the vertices
of a parallelogram in which:

• the line segment joining 0 and u− v is parallel to the line segment joining v and u,
• the line segment joining 0 and v is parallel to the line segment joining u− v and u, and
• the line segment joining 0 and u and the line segment joining v and u− v are diagonals.

real axis

imaginary axis

0

v

u− v

u

Proof. This is an immediate consequence of Theorem (2).
Remarks.
(a) We may further interpret ‘subtracting u by v’ as: translating the line segment joinint v to u to the line segment

joining 0 and u− v via parallelism.
(b) |u− v| is the (Euclidean) distance between u and v.
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7. Theorem (3). (Circles, and the geometric interpretation of modulus.)
Let p be a complex number, and r be a positive number.
The equation |z − p| = r with unknown z in the complex numbers describes the circle with centre p and of radius r.

real axis

imaginary axis

0

p

r

Proof. Exercise in coordinate geometry (or vector geometry) in school maths.
Remark. We may think of the equation |z − p| = 0 as the ‘degenerate’ circle with centre p and of radius 0.
Further remark. How about the geometric interpretation of the inequality ‘|z − p| < r’ with unknown z?

8. Theorem (4). (Geometric interpretation of multiplication by real numbers.)
Let z be a non-zero complex number, and c be a real number.

(a) Suppose c > 0. Then cz is the complex number on the same half line starting from 0 and joining z so that the
distance between 0 and cz is c|z|.

Picture in the scenario ‘c > 1’

real axis

imaginary axis

0

z

cz

Picture in the scenario ‘0 < c < 1’

real axis

imaginary axis

0

z

cz

(b) Suppose c < 0. Then cz is the complex number on the same half line starting from 0 and joining −z so that the
distance between 0 and cz is c|z|.

Proof. Exercise in coordinate geometry (or vector geometry) in school maths.

9. Theorem (5). (Geometric interpretation of multiplication by i)
Suppose z be a non-zero complex number. Then the points z, iz, −z, −iz are the four vertices of a square in which the
line segment joining z,−z and the line segment joining iz,−iz are the diagonals. The latter is obtained by rotating
the former about the point 0 by π/2 radians, so that iz is obtained from z, and −iz is obtained from −z.

real axis

imaginary axis

0

z

iz

−z

−iz

Proof. Exercise in coordinate geometry in school maths.
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10. Theorem (6).
Let z be a complex number. There exists some θ ∈ R such that z = |z|(cos(θ) + i sin(θ)).
Remark.
(a) The expression z = Re(z) + iIm(z) is referred to as the standard form of z.
(b) The expression z = |z|(cos(θ) + i sin(θ)) (for some appropriate θ) is referred to as the polar form of z.

Proof. Let z be a complex number. We have z = 0 or (z ̸= 0 and Re(z) ≥ 0) or (z ̸= 0 and Re(z) < 0).

• (Case 1). Suppose z = 0. Then (it is trivially true that) z = 0 = |z|(cos(0) + i sin(0)).
• (Case 2). Suppose z ̸= 0 and Re(z) ≥ 0.

Note that −1 ≤ Im(z)

|z|
≤ 1.

Define θ = arcsin(
Im(z)

|z|
). We have Im(z) = |z| sin(θ), and Re(z) = |z| cos(θ). Then z = |z|(cos(θ) + i sin(θ)).

• (Case 3). Suppose z ̸= 0 and Re(z) < 0. Define w = −z. We have w ̸= 0 and Re(w) > 0.

By the argument for (Case 2), there exists some θ′ ∈ R, namely θ′ = arcsin(
Im(w)

|w|
), such that w = |w|(cos(θ′)+

i sin(θ′)).
Define θ = θ′ + π. Then z = −w = −|w|(cos(θ′) + i sin(θ′))|w|(− cos(θ′)− i sin(θ′)) = |z|(cos(θ) + i sin(θ)).

11. Definition.
Let z be a non-zero complex number, and θ be a real number.
Suppose the equality z = |z|(cos(θ) + i sin(θ)) holds. Then θ is said to be an argument for z.
Further suppose −π < θ ≤ π. Then θ is called the principal argument for z, and we write θ = arg(z).
Remark.

• We do not write ‘the argument of the (non-zero) complex number so-and-so’, because the same non-zero complex
number has ‘infinitely many’ different arguments. (For example, for each n ∈ Z, 2nπ is an argument of 1.)

• However, each non-zero complex number has exactly one principal argument. So we should write ‘the principal
argument of the (non-zero) complex number so-and-so’.

12. Theorem (7). (Multiplication and division for complex numbers in polar form.)
Suppose z, w are non-zero complex numbers, with arguments θ, φ respectively. Then:

(a) zw = |z||w|(cos(θ + φ) + i sin(θ + φ)), and z

w
=

|z|
|w|

(cos(θ − φ) + i sin(θ − φ)).

(b) The modulus of zw is |z||w|, and the modulus of z

w
is |z|

|w|
.

(c) θ + φ is an argument for zw, and θ − φ is an argument for z

w
.

real axis

imaginary axis

0

z = |z|(cos(θ) + i sin(θ))

w = |w|(cos(φ) + i sin(φ))

zw = |z||w|(cos(θ + φ) + i sin(θ + φ))

Proof. Exercise. (The ‘compound-angle formulae’ for the sine and cosine functions are needed here.)
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13. Corollary to Theorem (7).
Let z be a non-zero complex number, and θ be an argument of z.
z2 = |z|2(cos(2θ) + i sin(2θ)).

14. Theorem (8).
Let w, ζ be non-zero complex numbers, and φ be an argument of w. Suppose w = ζ2.

Then ζ =
√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
or ζ = −

√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
.

Proof. Apply Corollary to Theorem (7).

Remark. The two distinct non-zero complex numbers
√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
, −

√
|w|

(
cos

(φ
2

)
+ i sin

(φ
2

))
are the square roots of the complex number w.
Further remark. How to interpret Theorem (8) in terms of plane geometry?

real axis

imaginary axis

0

w = |w|(cos(φ) + i sin(φ))

ζ1 =
√
|w|(cos(φ/2) + i sin(φ/2))

ζ2 = −
√

|w|(cos(φ/2) + i sin(φ/2))

15. Theorem (9). (Roots of quadratic polynomials with complex coefficients.)
Let a, b, c be complex numbers, with a ̸= 0. Let α be a number. Let f(z) be the quadratic polynomial given by
f(z) = az2 + bz + c.

(a) Suppose α is a root of f(z). Let β = − b

a
− α. Then the statements below hold:

i. f(z) = a(z − α)(z − β) as polynomials.
ii. β is a root of f(z).
iii. αβ =

c

a
.

(b) Define ∆f = b2 − 4ac. We call ∆f the discriminant of the polynomial f(z). Then the statements below hold:

i. f(z) = a

[(
z +

b

2a

)2

− ∆f

4a2

]
as polynomials.

(This polynomial equality is referred as ‘completing the square for the quadratic polynomial f(z)’.)

ii. Suppose ∆f ̸= 0. Suppose σ is a square root of ∆f

4a2
. Define α± = − b

2a
± σ respectively. Then f(z)

has two distinct roots amongst the complex numbers, namely α+, α−, and f(z) is completely factorized as
f(z) = a(z − α+)(z − α−).

iii. Now suppose ∆f = 0 instead. Then f(z) has a repeated root, namely, −b/2a, amongst the complex numbers,
and f(z) is completely factorized as f(z) = a(z + b/2a)2.

Remark. What the above result says is that each quadratic polynomial with complex coefficients f(z) has a pair
of roots and ‘factorizes into linear polynomials’. Moreover, if the polynomial f(z) is given by f(z) = az2 + bz+ c and

the pair of roots concerned are α, β, then α+ β = − b

a
and αβ =

c

a
. Furthermore, regarding the quadratic equation

az2 + bz + c = 0 —— (⋆)

with unknown x, there are exactly two mutually exclusive possibilities:

(1) Suppose ∆f ̸= 0. Then the equation (⋆) has exactly two distinct solutions amongst the complex numbers.
(2) Suppose ∆f = 0. Then the equation (⋆) has exactly one repeated solution amongst the complex numbers.
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In any case, the equation (⋆) has at least one solution amongst the complex numbers.
Proof. Exercise. (Generalize what you have learnt about quadratic polynomials with real coefficients in school
maths.)

16. Appendix 1: Complex numbers and polynomials.
Theorem (9) is significant in two ways:

(a) This result for quadratic polynomials is a ‘baby case’ of the Fundamental Theorem of Algebra, first proved
by Gauss, which says:
• Every non-constant polynomial with coefficients in complex numbers has at least one root amongst the

complex numbers.
In fact Gauss gave several proofs for this result.
(You will probably learn one proof in your complex variables course.)

(b) We can express all the roots of every quadratic polynomial with coefficients in complex numbers in terms of its
coefficients with the help of the operations +,−,×,÷, and with the taking of (square) roots.
So it is natural to ask whether we can do the same thing for cubic polynomials, quartic polynomials, quintic
polynomials et cetera.
The answer is yes for cubic polynomials and quartic polynomials, but no in general for higher-degree polynomials.
(You will know more about these in your abstract algebra course.)

17. Appendix 2: linear algebra done with complex numbers.
Everything in your beginning linear algebra course which involves real numbers and addition, subtraction, multipli-
cation and division for real numbers alone can be adapted to complex numbers.

(a) Gaussian elimination can be adapted for solving systems of linear equations with complex given’s and complex
unknowns.

(b) General results on systems of linear equations with real given’s and real unknowns can be adapted as results on
systems of linear equations with complex given’s and complex unknowns.

(c) The rules of operations which apply to matrices, column vectors, and determinants with real entries can be
adapted to matrices, column vectors and determinants with complex entries.

(d) The notions of row operations, reduced row-echelon forms, non-singularity, and invertibility, matrix inverses can
adapted.

(e) Subspaces of Cn (over C) are defined in the same manner as subspaces of Rn (over R):
• Suppose V is a non-empty subset of Cn. Then V is said to form a subspace of Cn over C if, for any α, β ∈ C,

for any x,y ∈ V , αx + βy ∈ V .
(f) The notions of null space, column space can be adapted by changing the word ‘real’ to the word ‘complex’ in

the respective definitions.
Let A be an (m× n)-matrix with complex entries.

i. The null space of A is defined to be the set {x ∈ Cn : Ax = 0}.

ii. The column space of A is defined to be the set
{

y ∈ Cm : There exists some x ∈ Cn

such that y = Ax
}

.

(g) The notions of linear combination, span, linear dependence/independence, basis can be adapted by changing the
word ‘real’ to the word ‘complex’ in the respective definitions.
Let u1,u2, · · · ,uk,v ∈ Cn.

i. v is said to be a linear combination of u1,u2, · · · ,uk if there exist some α1, α2, · · · , αk ∈ C such that
v = α1u1 + α2u2 + · · ·+ αkuk.

ii. The span of u1,u2, · · · ,uk is defined to be the set
{

v ∈ Cn : v is a linear combination
of u1,u2, · · · ,uk.

}
.

iii. u1,u2, · · · ,uk are said to be linear dependent over C if there exist some α1, α2, · · · , αk ∈ C, not all zero,
such that α1u1 + α2u2 + · · ·+ αkuk = 0.

iv. u1,u2, · · · ,uk are said to be linear independent over C if for any α1, α2, · · · , αk ∈ C, if α1u1 + α2u2 + · · ·+
αkuk = 0 then α1 = α2 = · · · = αk = 0.

v. Let V be a subspace of Cn. Suppose u1,u2, · · · ,uk ∈ V .
u1,u2, · · · ,uk is said to constitute a basis for V if the span of u1,u2, · · · ,uk is V and u1,u2, · · · ,uk are
linear independent over C.

All results formulated in terms of these concepts can be adapted by changing the word ‘real’ to the word ‘complex’
in the statements for the results.
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