
MATH1050 Formalization of the Real Number System as understood in School Maths

1. In school maths we take the real number system and everything about it for granted. But if you ask ‘What is the
real number system?’, ‘Why are the various properties of the real number system as stated in school maths textbooks
valid?’, you will soon find yourself in a mist.

A standard ‘school-maths textbook’ treatment on the real number system probably proceed as described below:

• The reader will most likely find nothing beyond the ‘collection of all terminating or non-terminating decimals’,
the imagery of the ‘real line’, and some examples of numbers (such as 0, 1, 2, 2.5, 2.7̇2̇22/7, π,−4) which are called
‘real numbers’.
Next the reader is convinced (or be made to believe) that it makes sense to talk about addition, subtraction,
multiplication, division for real numbers, and it also makes sense to compare values of real numbers.
Certain rules governing the use of the arithmetic operations +, −, ×, ÷ and the ‘ordering symbols’ ≤, < are
introduced, and the reader is convinced (or is made to believe) their validity, ‘because’ they seem to be valid
when they are ‘restricted’ to the seemingly more familiar types of numbers, such as integers, or rational numbers.
These rules are left un-proved (or un-justified) in school maths.
In short, everything about the real number system is treated as ‘facts’, tacitly assumed to be valid.

This is ironical: these ‘facts’ about the real number system, which are extensively used for the justification of everything
else in mathematics, are left unexplained.

Such a lack of appropriate treatment is expected, for a simple reason. To be in a position to justify something, some
basis of justification must be agreed upon in the first place. Such a basis is made up of two things:

• appropriate definitions for the objects under question, and

• some statements concerned with those objects under question which are assumed to be true without proof.

But in school maths, real numbers and +, −, ×, ÷, ≤, < have been left undefined in the first place.

This brings ourselves to a serious problem:

• on what (philosophical) grounds should we expect ourselves to be rigorous on various matters which involves the
real number system if we are not sure the real number system is ‘safe’ (or ‘safely true’) mathematically?

There are two possible ways to tackle this problem:

• Method 1. Construct the real number system out of something which (we believe) is fundamental enough, and
then prove everything about the real number system in terms of that something which is fundamental enough.

• Method 2. Formalize the real number system by setting up a system of axioms which governs everything concerned
with it, and stick to such a system throughout.

We can make the real number system ‘safe’ mathematically by either method. Method 1 (the ‘constructive approach’)
is protracted and unsavoury; Method 2 (the ‘axiomatic approach’) looks un-natural, especially when un-motivated. In
any case, at this moment, we do not have at our disposal enough mathematical tools for either method to be applied.

We are going to take a preparatory step that will pave the way to a solution for the problem (through either method):
we formalize the standard ‘school-maths textbook’ treatment on the real number system.

We take for granted that it makes sense to talk about objects known as real numbers, ‘operations’ known as addition,
multiplication for real numbers, and ‘non-negativity’ for real numbers. We also select a small amount of statements,
formulated in terms of addition, multiplication and non-negativity alone, whose validity will be taken for granted. In
these things we stick with our school maths understanding on the real number system. However, whatever else about
the real number system will be defined and/or justified (as carefully as possible) in terms of the above.

If, and when, we apply Method 1 to make sense of the real number system, the selected statements will be the ones
that needs to be justified from what is regarded to be more fundamental.

If, and when, we apply Method 2 to make sense of the real number system, the selected statements will serve as the
‘axioms’ for the real number system.
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2. We will agree that the real number system, as understood in school maths, consists of:

• a set, denoted by R, whose elements are called real numbers, amongst them two distinct real numbers called
zero, one and denoted by 0, 1 respectively,

• the arithmetic operations + , ×, called addition, multiplication in the reals respectively) , and

• a subset of R, denoted by R≥0
, whose elements are called non-negative real numbers,

forming an ordered field, in the sense that the laws of arithmetic for the reals, namely the statements (A1)-
(A11), and the laws of order for the reals (compatible to the arithmetic operations), namely the statements
(O1)-(O3), are true statements.

Warning. This does not cover what is referred to be as analytic completeness which will be required to make
sense of doing infinitesimal calculus in the real number system. In fact, we can’t even make sense of ‘taking square
root for non-negative real numbers’ without the help of analytic completeness.

3. Laws of Arithmetic for the reals.

(A1) For any a, b ∈ R, a+ b ∈ R.

(A2) For any a, b, c ∈ R, (a+ b) + c = a+ (b+ c).

(A3) There exists some z ∈ R, namely z = 0, such that for any a ∈ R, a+ z = a and z + a = a.

(A4) For any a ∈ R, there exists some b ∈ R, called an additive inverse of a, such that a+ b = 0 and b+ a = 0.

(A5) For any a, b ∈ R, a+ b = b+ a.

(A6) For any a, b ∈ R, a× b ∈ R.

(A7) For any a, b, c ∈ R, (a× b)× c = a× (b× c).

(A8) There exists some u ∈ R, namely u = 1, such that for any a ∈ R, a× u = a and u× a = a.

(A9) For any a ∈ R\{0}, there exists some b ∈ R, called a multiplicative inverse of a, such that a × b = 1 and
b× a = 1.

(A10) For any a, b ∈ R, a× b = b× a.

(A11) For any a, b, c ∈ R, (a+ b)× c = (a× c) + (b× c) and a× (b+ c) = (a× b) + (a× c).

4. With the help of (A1)-(A11), we can deduce the statements below:

Statement (1a).

For any z′ ∈ R, if (for any a ∈ R, a+ z′ = a and z′ + a = a) then z′ = 0.

(In this sense 0 is unique additive identity in R.)

Statement (1b).

For any u′ ∈ R, if (for any a ∈ R, a× u′ = a and u′ × a = a) then u′ = 1.

(In this sense 1 is the unique multiplicative identity in R.)

Statement (1c).

For any a, b, c ∈ R, if a+ b = 0 = b+ a and a+ c = 0 = c+ a then b = c.

(By virtue of (A4) and Statement (1c), the additive inverse of each real number a is unique, and we denote it by −a.)

Statement (1d).

For any a, b, c ∈ R, if a ̸= 0 and a× b = 1 = b× a and a× c = 1 = c× a then b = c.

(By virtue of (A9) and Statement (1d), the multiplicative inverse of each non-zero real number a is unique, and we
denote it by a−1.)

We give the proof of Statement (1a) below. The proofs of Statements (1b), (1c), (1d) are similar.

Proof of Statement (1a).
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Let z′ ∈ R. Suppose that for any a ∈ R, a+ z′ = a and z′ + a = a.

Then, in particular, 0 + z′ = 0.

By (A3), we have 0 + z′ = z′.

Then z′ = 0 + z′ = 0.

5. Subtraction ‘−’ and division ÷ in the reals are defined in terms of addition and multiplication in the reals,
under the assumption of the validity of the statements (A1)-(A11):

(a) For any c, d ∈ R, we define c− d to be the real number c+ (−d).

(b) For any c ∈ R, for any d ∈ R\{0}, we define c÷ d to be the real number c× (d−1).

6. All ‘rules of arithmetic’ involving +, −, ×, ÷ alone, which you are familiar with in school maths, can be deduced
from the statements (A1)-(A11).

Below are some illustrations:

Statement (2a).

For any a ∈ R, a× 0 = 0.

Proof of Statement (2a).

Let a ∈ R.

By (A3), we have 0 + 0 = 0.

By (A11), we have (a× 0) + (a× 0) = a× (0 + 0) = a× 0.

By (A4), there exists some c ∈ R such that (a× 0) + c = 0.

Then we have

a× 0 = (a× 0) + 0 = (a× 0) + [(a× 0) + c] = [(a× 0) + (a× 0)] + c = (a× 0) + c = 0.

(The first and third equality are due to (A3), (A2) respectively.)

Statement (2b).

For any a ∈ R, −(−a) = a.

Proof of Statement (2b).

Let a ∈ R. Write b = −a.

By (A4), a+ (−a) = 0.

Also by (A4), (−b) + b = 0.

Then a+ (−a) = 0 = (−b) + b = [−(−a)] + (−a).

Therefore

a = a+ 0 = a+ [(−a) + a] = [a+ (−a)] + a = {[−(−a)] + (−a)}+ a = [−(−a)] + [(−a) + a] = [−(−a)] + 0 = −(−a).

(The first and seventh equalities are due to (A3). The second and sixth equalities are due to (A4). The third and
fifth equalities are due to (A2).)

Statement (2c).

For any a, b ∈ R, a× (−b) = (−a)× b = −(a× b), and (−a)× (−b) = a× b.

Proof of Statement (2c).

Let a, b ∈ R.

3



• By (A4), b+ (−b) = 0.
Then (a× b) + [a× (−b)] = a× [b+ (−b)] = a× 0 = 0.
(The first equality is due to (A11). The third equality is due to Statement (2a).)
Then we have

a×(−b) = 0+[a×(−b)] = {[−(a×b)]+(a×b)}+[a×(−b)] = [−(a×b)]+{(a×b)+[a×(−b)]} = [−(a×b)]+0 = −(a×b).

(The first and fifth equalities are due to (A3). The second equality is due to (A4). The third equality is due to
(A2).)

• By (A5), (−a)× b = b× (−a).
We have b× (−a) = −(b× a).
Again by (A5), b× a = a× b.
Therefore (−a)× b = b× (−a) = −(b× a) = −(a× b).

• We have (−a)× (−b) = −[a× (−b)] = −[−(a× b)] = a× b.

Statement (2d).

For any a, b ∈ R, −(a+ b) = (−a) + (−b).

Proof of Statement (2d). Exercise.

Statement (2e).

For any a, b ∈ R, if a× b = 0 then a = 0 or b = 0.

(In this sense we say that there is no zero-divisor in R.)

Proof of Statement (2e).

Let a, b ∈ R. Suppose a× b = 0.

Note that a = 0 or a ̸= 0.

• (Case 1). Suppose a = 0. Then a = 0 or b = 0.

• (Case 2). Suppose a ̸= 0. By (A9), there exists some c ∈ R such that c× a = 1.

Then we have
b = 1× b = (c× a)× b = c× (a× b) = c× 0 = 0.

(The first and third equalities are due to (A8), (A7) respectively.)

Statement (2f).

For any a, b, c ∈ R, if a ̸= 0 and a× b = a× c then b = c.

Proof of Statement (2f).

Let a, b, c ∈ R. Suppose a ̸= 0 and a× b = a× c.

By (A10), there exists some d ∈ R such that d× a = 1.

Then
b = 1× b = (d× a)× b = d× (a× b) = d× (a× c) = (d× a)× c = 1× c = c.

(The first and seventh equalities are due to (A8). The third and fifth equalities are due to (A7).)

7. Laws of Order for the reals, compatible with the Laws of Arithmetic.

(O1) For any a, b ∈ R≥0
, a+ b ∈ R≥0

and a× b ∈ R≥0
.

(O2) For any a ∈ R, a ∈ R≥0
or −a ∈ R≥0

.

(O3) For any a ∈ R, if a ∈ R≥0
and −a ∈ R≥0

then a = 0.
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8. The usual ordering for the reals, which is denoted by ≤, is defined in terms of subtraction and non-negative real
numbers:

• For any a, b ∈ R, we say a is less than or equal to b, and write a ≤ b, if b− a ∈ R≥0
.

For any real numbers a, b, we agree to write ‘a ≤ b’ also as ‘b ≥ a’. Furthermore, for any real numbers c, d, if c ≤ d

and c ̸= d, we agree to write ‘c < d’, or equivalently ‘d > c’.

For each real number b, we say that it is positive (or negative respectively) if b > 0 (or b < 0 respectively). For
each real number c, we say that it is non-positive if c ≤ 0.

With the symbol ‘≤’, we can re-write the statements (O1)-(O3) as:

(O1) For any a, b ∈ R, if a ≥ 0 and b ≥ 0 then a+ b ≥ 0 and a× b ≥ 0.

(O2) For any a ∈ R, a ≥ 0 or −a ≥ 0.

(O3) For any a ∈ R, if a ≥ 0 and −a ≥ 0 then a = 0.

9. By virtue of the validity of the statements (A1)-(A11) and (O1)-(O3), we can deduce the statements (UO1)-(UO4):

(UO1) For any a ∈ R, a ≤ a.

(UO2) For any a, b ∈ R, if a ≤ b and b ≤ a then a = b.

(UO3) For any a, b, c ∈ R, if a ≤ b and b ≤ c then a ≤ c.

(UO4) For any a ∈ R, a ≤ 0 or 0 ≤ a.

By virtue of the validity of the statements (UO1)-(UO4), ≤ defines a total ordering in R.

Statements (UO1)-(UO4) are often collectively presented as Statement (UO1)-(UO3) together with Statement (UO5):

(UO5) For any a ∈ R, exactly one of ‘a < 0’, ‘a = 0’, ‘a > 0’ is true.

(UO5) is called the Law of Trichotomy for the reals.

10. Absolute value for real numbers is defined in terms of ≤ as well:

• For any a ∈ R, we define the absolute value |a| of the number a by

|a| =

 a if a ≥ 0

−a if a < 0

11. The usual ordering for the reals is special because the way (through belonging to the special set R≥0) it is defined
makes it compatible to the laws of arithmetic for the reals.

All ‘rules of inequalities’ involving +, −, ×, ÷, and ≤, < alone, which you are familiar with in school maths, can be
deduced from the statements (A1)-(A11), (O1)-(O3).

Below are some illustrations:

Statement (3a).

For any a ∈ R, a2 ≥ 0.

(‘a2’ is understood as a short-hand for ‘a× a’.)

Proof of Statement (3a).

Let a ∈ R.

By (O2), a ≥ 0 or −a ≥ 0.

• (Case 1). Suppose a ≥ 0. Then by (O1), a2 = a× a ≥ 0.
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• (Case 2). Suppose −a ≥ 0. Then
a2 = a× a = (−a)× (−a) ≥ 0.

(The second equality is due to Statement (2b). The inequality is due to (O1).)

Therefore, in any case, a2 ≥ 0.

Statement (3b).

For any a, b ∈ R, if a ≥ 0 and b ≤ 0 then a× b ≤ 0.

Proof of Statement (3b).

Let a, b ∈ R. Suppose a ≥ 0 and b ≤ 0.

By definition, since b ≤ 0, we have −b ≥ 0.

Then a ≥ 0 and −b ≥ 0.

By (O1), a× (−b) ≥ 0.

By Statement (2c), a× (−b) = −(a× b).

Then −(a× b) ≥ 0.

Therefore, by definition, a× b ≤ 0.

Statement (3c).

For any a, b, c ∈ R, if a ≤ b then a+ c ≤ b+ c.

Proof of Statement (3c).

Let a, b, c ∈ R. Suppose a ≤ b.

Then, by definition, b− a ≥ 0.

Note that

(b+ c)− (a+ c) = (b+ c) + [−(a+ c)]

= (b+ c) + [(−a) + (−c)]

= b+ {c+ [(−a) + (−c)]}

= b+ {c+ [(−a) + (−c)]}

= b+ {c+ [(−c) + (−a)]}

= b+ {[c+ (−c)] + (−a)} = b+ [0 + (−a)]

= b+ (−a)

= b− a.

(Fill in the reason for each equality.)

Since b− a ≥ 0, we have (b+ c)− (a+ c) ≥ 0 also.

Then a+ c ≤ b+ c by definition.

Statement (3d).

For any a, b, c, d ∈ R, if a ≤ b and c ≤ d then a+ c ≤ b+ d.

Proof of Statement (3d). Exercise. (Apply Statement (3c) and (UO3).)

12. Beyond simple arithmetic?

We make two observations:

(a) Throughout the discussion above, we may replace every ‘real’, ‘real number’, ‘R’ et cetera respectively by
‘rationals’, ‘rational number’, ‘Q’ et cetera, and everything seems to remain fine.
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(b) We seem to have touched upon nothing that may be related to infinitesimal calculus.

In fact (if we want to do so), we may formalize the ‘rational number system’ as understood in school maths in the
exactly same way as we have done for the the real number system above. The rational number system will consist
of:

• a set, denoted by Q, whose elements are called rational numbers, amongst them two distinct rational numbers
called zero, one and denoted by 0, 1 respectively,

• the arithmetic operations + , ×, called addition, multiplication in the rationals respectively) , and

• a subset of Q, denoted by Q≥0
, whose elements are called non-negative rational numbers,

forming an ordered field, in the sense that the laws of arithmetic for the rationals (which are the statements
resultant from replacing ‘R’ in (A1)-(A11) by ‘Q’) and the laws of order for the rationals (compatible to
the arithmetic operations) (which are the statements resultant from replacing ‘R’ in (O1)-(O3) by ‘Q’), are true
statements. An argument for a statement concerned with real numbers which relies on (A1)-(A11) and (O1)-(O3)
alone will remain valid when adapted as an argument for the statement resultant from replacing ‘real’ by ‘rational’.

This suggests why we have touched upon nothing that may be related to infinitesimal calculus. One crucial distinction
between the rational number system and the real number system is that there are ‘gaps’ in the former while there is
none in the latter. Infinitesimal calculus can be done in the real number system because of the non-existence of ‘gaps’
in the real number system. (This is technically known as analytic completeness of the real number system.) We
will return to this when we are more ready for it.
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