1. Definition.

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence in \mathbb{C} . The infinite sequence $\{a_n\}_{n=0}^{\infty}$ is said to be an arithmetic progression if the statement (AP) holds:

(AP) There exists some $d \in \mathbb{C}$ such that for any $n \in \mathbb{N}$, $a_{n+1} - a_n = d$.

The number d is called the **common difference** of the arithmetic progression $\{a_n\}_{n=0}^{\infty}$.

Remark. The use of the article 'the' should be justified with a proof for this statement:

Each arithmetic progression has at most one common difference.

What is it, really? In a less 'compact' (but more clumsy) form, this reads:

'Let $\{a_n\}_{n=0}^{\infty}$ be an arithmetic progression, and d, d' be complex numbers. Suppose d, d' are common differences of the arithmetic progression $\{a_n\}_{n=0}^{\infty}$. Then $d = d'$.

Remark on terminology. Let $N \in \mathbb{N} \setminus \{0, 1\}$. Suppose c_0, c_1, \dots, c_N are $N + 1$ complex numbers. We abuse notation in saying that c_0, c_1, \dots, c_N form an arithmetic progression with common difference d exactly when there exists some arithmetic progression $\{a_n\}_{n=0}^{\infty}$ with common difference d such that $a_k = c_k$ for any integer k amongst $0, 1, 2, \cdots, N$. (In plain language, c_0, c_1, \cdots, c_N are identified as the 0-th term, 1-st term, ..., N-th term of the arithmetic progression $\{a_n\}_{n=0}^{\infty}$.

2. Lemma (1).

Suppose ${a_n}_{n=0}^{\infty}$ is an arithmetic progression, with common difference d.

Then $a_{m+n} = a_m + nd$ for any $m, n \in \mathbb{N}$. (In particular $a_n = a_0 + nd$ for any $n \in \mathbb{N}$.)

3. Theorem (2). (Equivalent formulations of the definition of arithmetic progression.)

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence in \mathbb{C} . The statements below are logically equivalent:

- (a) ${a_n}_{n=0}^{\infty}$ is an arithmetic progression.
- (b) There exists some $d \in \mathbb{C}$ such that for any $n \in \mathbb{N}$, $a_n = a_0 + nd$.
- (c) For any $k \in \mathbb{N}$, $a_{k+2} a_{k+1} = a_{k+1} a_k$.
- (d) For any $k \in \mathbb{N}$, $a_{k+1} = \frac{a_k + a_{k+2}}{2}$ $\frac{a_{\kappa+2}}{2}.$
- (e) For any $k \in \mathbb{N}$, the numbers a_k, a_{k+1}, a_{k+2} form an arithmetic progression.
- 4. Lemma (3).

Let
$$
n \in \mathbb{N}
$$
. The equality $0 + 1 + 2 + 3 + \dots + (n - 1) + n = \frac{n(n + 1)}{2}$ holds.

Remark on its proof. Write $(0 + 1 + 2 + 3 + \cdots + (n - 1) + n)$ as $(n + (n - 1) + (n - 2) + (n - 3) + \cdots + 1 + 0)$. Add the latter with the former and then count how many copies of n is obtained in the sum.

5. Theorem (4). (Sum of arithmetic progression.)

Let ${a_n}_{n=0}^{\infty}$ be an arithmetic progression with common difference d.

For any
$$
m, n \in \mathbb{N}
$$
, $a_m + a_{m+1} + a_{m+2} + \cdots + a_{m+n} = (n+1)a_m + \frac{n(n+1)}{2}d$.

6. Definition.

Let $\{b_n\}_{n=0}^{\infty}$ be an infinite sequence in $\mathbb{C}\setminus\{0\}$. The infinite sequence $\{b_n\}_{n=0}^{\infty}$ is said to be a **geometric progression** if the statement (GP) holds:

(GP) There exists some $r \in \mathbb{C} \backslash \{0\}$ such that for any $n \in \mathbb{N}$, $\frac{b_{n+1}}{l}$ $\frac{n+1}{b_n} = r.$

The number r is called the **common ratio** of this geometric progression.

Remark. The use of the article 'the' should be justified with a proof for this statement:

Each geometric progression has at most one common ratio.

What is it, really? In a less 'compact' (but more clumsy) form, this reads:

'Let ${b_n}_{n=0}^{\infty}$ be a geometric progression, and r, r' be complex numbers. Suppose r, r' are common ratios of the geometric progression ${b_n}_{n=0}^{\infty}$. Then $r = r'$.

Remark on terminology. Let $N \in \mathbb{N}\backslash\{0,1\}$. Suppose c_0, c_1, \dots, c_N are $N + 1$ non-zero complex numbers. We abuse notation in saying that c_0, c_1, \dots, c_N form a geometric progression with common ratio r exactly when there exists some geometric progression ${b_n}_{n=0}^{\infty}$ with common ratio r such that $b_k = c_k$ for any integer k amongst $0, 1, 2, \dots, N$. (In plain language, c_0, c_1, \dots, c_N are identified as the 0-th term, 1-st term, ..., N-th term of the geometric progression ${b_n}_{n=0}^{\infty}$.

7. Lemma (5).

Suppose ${b_n}_{n=0}^{\infty}$ is a geometric progression, with common ratio r. Then $b_{m+n} = b_m r^n$ for any $m, n \in \mathbb{N}$. (In particular $b_n = b_0 r^n$ for any $n \in \mathbb{N}$.)

8. Theorem (6). (Equivalent formulations of the definition of geometric progression.)

Let ${b_n}_{n=0}^{\infty}$ be an infinite sequence in $\mathbb{C}\backslash\{0\}$. The statements below are logically equivalent:

- (a) ${b_n}_{n=0}^{\infty}$ is a geometric progression.
- (b) There exists some $r \in \mathbb{C} \backslash \{0\}$ such that for any $n \in \mathbb{N}$, $b_n = b_0 r^n$.
- (c) For any $k \in \mathbb{N}$, $\frac{b_{k+2}}{b_{k+2}}$ $rac{b_{k+2}}{b_{k+1}} = \frac{b_{k+1}}{b_k}$ $\frac{k+1}{b_k}$.
- (d) For any $k \in \mathbb{N}$, $b_{k+1}^2 = b_k b_{k+2}$.
- (e) For any $k \in \mathbb{N}$, the numbers b_k, b_{k+1}, b_{k+2} form a geometric progression.

9. Lemma (7).

Let $n \in \mathbb{N}$ and $r \in \mathbb{C}$. The statements below hold:

- (a) $1 r^{n+1} = (1 r)(1 + r + r^2 + \dots + r^n).$
- (b) Further suppose $r \neq 1$. Then $\frac{1 r^{n+1}}{1}$ $\frac{1-r^{n+1}}{1-r} = 1 + r + r^2 + \dots + r^n.$

Remark on its proof. Multiply $1 + r + r^2 + \cdots + r^n$ by r to obtain $r + r^2 + r^3 + \cdots + r^{n+1}$. Subtract the latter from the former and see what happens.

10. Theorem (8). (A useful 'identity'.)

Let $n \in \mathbb{N}$. Let $s, t \in \mathbb{C}$. The equality $s^{n+1} - t^{n+1} = (s-t)(s^n + s^{n-1}t + s^{n-2}t^2 + \cdots + s^{n-k}t^k + \cdots + st^{n-1} + t^n)$ holds.

Remark on its proof. Apply Lemma (7): 'formally' substitute $r = t/s$ and multiply both sides by s^{n+1} .

Remark. When we want to 'factorizing' the expression $s^n - t^n$ or $s^n + t^n$ with the help of integers only, we have these equalities below for 'small values' of n :

$$
\begin{array}{ll} s^2-t^2=(s-t)(s+t), & s^3-t^3=(s-t)(s^2+st+t^2), & s^3+t^3=(s+t)(s^2-st+t^2),\\ s^4-t^4=(s-t)(s+t)(s^2+t^2), & s^5-t^5=(s-t)(s^4+s^3t+s^2t^2+st^3+t^4), & s^5+t^5=(s+t)(s^4-s^3t+s^2t^2-st^3+t^4),\\ s^6-t^6=(s-t)(s+t)(s^2+st+t^2)(s^2-st+t^2), & s^6+t^6=(s^2+t^2)(s^4-s^2t^2+t^2), \end{array}
$$

Of course, when we resort to roots of unity, we may 'completely factorize' $sⁿ - tⁿ$ into a product of 'linear expressions' with the help of complex numbers. Or we may 'factorize' $s^n - t^n$ into a product of 'linear expressions' and 'quadratic expressions' with the help of real numbers only. (We need De Moivre's Theorem and results about roots of unity here.)

11. Theorem (9). (Sum of geometric progression.)

Let ${b_n}_{n=0}^{\infty}$ be a geometric progression with common ratio r. Then for each $m, n \in \mathbb{N}$,

$$
b_m + b_{m+1} + b_{m+2} + \dots + b_{m+n} = \begin{cases} (n+1)b_m & \text{if } r = 1\\ \frac{b_m(r^{n+1} - 1)}{r - 1} & \text{if } r \neq 1 \end{cases}
$$

12. Theorem (10). (Limiting value for a sum of geometric progression.)

Let $\{b_n\}_{n=0}^{\infty}$ be a geometric progression with common ratio r. Suppose $|r| < 1$.

Then
$$
\lim_{n \to \infty} (b_0 + b_1 + b_2 + \dots + b_n) = \frac{b_0}{1 - r}.
$$

Remark on its proof. Apply Lemma (7), and standard techniques in *calculus* such as the Sandwich Rule.

Further remark. In school mathematics, you were concerned with the situation in which r was real. But this result holds even when r is not a real number.