
MATH1050 Arithmetic progression and geometric progression

1. Definition.

Let {an}
∞

n=0 be an infinite sequence in C. The infinite sequence {an}
∞

n=0 is said to be an arithmetic progression

if the statement (AP) holds:

(AP) There exists some d ∈ C such that for any n ∈ N, an+1 − an = d.

The number d is called the common difference of the arithmetic progression {an}
∞

n=0.

Remark. The use of the article ‘the’ should be justified with a proof for this statement:

Each arithmetic progression has at most one common difference.

What is it, really? In a less ‘compact’ (but more clumsy) form, this reads:

‘Let {an}
∞

n=0 be an arithmetic progression, and d, d′ be complex numbers. Suppose d, d′ are common differences

of the arithmetic progression {an}
∞

n=0. Then d = d′.’

Remark on terminology. Let N ∈ N\{0, 1}. Suppose c0, c1, · · · , cN are N + 1 complex numbers. We abuse
notation in saying that c0, c1, · · · , cN form an arithmetic progression with common difference d exactly when there
exists some arithmetic progression {an}

∞

n=0 with common difference d such that ak = ck for any integer k amongst

0, 1, 2, · · · , N . (In plain language, c0, c1, · · · , cN are identified as the 0-th term, 1-st term, ... , N -th term of the

arithmetic progression {an}
∞

n=0.)

2. Lemma (1).

Suppose {an}
∞

n=0 is an arithmetic progression, with common difference d.

Then am+n = am + nd for any m,n ∈ N. (In particular an = a0 + nd for any n ∈ N.)

3. Theorem (2). (Equivalent formulations of the definition of arithmetic progression.)

Let {an}
∞

n=0 be an infinite sequence in C. The statements below are logically equivalent:

(a) {an}
∞

n=0 is an arithmetic progression.

(b) There exists some d ∈ C such that for any n ∈ N, an = a0 + nd.

(c) For any k ∈ N, ak+2 − ak+1 = ak+1 − ak.

(d) For any k ∈ N, ak+1 =
ak + ak+2

2
.

(e) For any k ∈ N, the numbers ak, ak+1, ak+2 form an arithmetic progression.

4. Lemma (3).

Let n ∈ N. The equality 0 + 1 + 2 + 3 + · · ·+ (n− 1) + n =
n(n+ 1)

2
holds.

Remark on its proof. Write ‘0 + 1 + 2 + 3 + · · ·+ (n− 1) + n’ as ‘n+ (n− 1) + (n− 2) + (n− 3) + · · ·+ 1 + 0’.
Add the latter with the former and then count how many copies of n is obtained in the sum.

5. Theorem (4). (Sum of arithmetic progression.)

Let {an}
∞

n=0 be an arithmetic progression with common difference d.

For any m,n ∈ N, am + am+1 + am+2 + · · ·+ am+n = (n+ 1)am +
n(n+ 1)

2
d.

6. Definition.

Let {bn}
∞

n=0 be an infinite sequence in C\{0}. The infinite sequence {bn}
∞

n=0 is said to be a geometric progression

if the statement (GP) holds:

(GP) There exists some r ∈ C\{0} such that for any n ∈ N,
bn+1

bn
= r.

The number r is called the common ratio of this geometric progression.

Remark. The use of the article ‘the’ should be justified with a proof for this statement:

Each geometric progression has at most one common ratio.

What is it, really? In a less ‘compact’ (but more clumsy) form, this reads:

‘Let {bn}
∞

n=0 be a geometric progression, and r, r′ be complex numbers. Suppose r, r′ are common ratios of the

geometric progression {bn}
∞

n=0. Then r = r′.’
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Remark on terminology. Let N ∈ N\{0, 1}. Suppose c0, c1, · · · , cN are N + 1 non-zero complex numbers.
We abuse notation in saying that c0, c1, · · · , cN form a geometric progression with common ratio r exactly when
there exists some geometric progression {bn}

∞

n=0 with common ratio r such that bk = ck for any integer k amongst

0, 1, 2, · · · , N . (In plain language, c0, c1, · · · , cN are identified as the 0-th term, 1-st term, ... , N -th term of the

geometric progression {bn}
∞

n=0.)

7. Lemma (5).

Suppose {bn}
∞

n=0 is a geometric progression, with common ratio r.

Then bm+n = bmrn for any m,n ∈ N. (In particular bn = b0r
n for any n ∈ N.)

8. Theorem (6). (Equivalent formulations of the definition of geometric progression.)

Let {bn}
∞

n=0 be an infinite sequence in C\{0}. The statements below are logically equivalent:

(a) {bn}
∞

n=0 is a geometric progression.

(b) There exists some r ∈ C\{0} such that for any n ∈ N, bn = b0r
n.

(c) For any k ∈ N,
bk+2

bk+1

=
bk+1

bk
.

(d) For any k ∈ N, b2
k+1

= bkbk+2.

(e) For any k ∈ N, the numbers bk, bk+1, bk+2 form a geometric progression.

9. Lemma (7).

Let n ∈ N and r ∈ C. The statements below hold:

(a) 1− rn+1 = (1− r)(1 + r + r2 + · · ·+ rn).

(b) Further suppose r 6= 1. Then
1− rn+1

1− r
= 1 + r + r2 + · · ·+ rn.

Remark on its proof. Multiply 1 + r + r2 + · · ·+ rn by r to obtain r + r2 + r3 + · · ·+ rn+1. Subtract the latter
from the former and see what happens.

10. Theorem (8). (A useful ‘identity’.)

Let n ∈ N. Let s, t ∈ C. The equality sn+1 − tn+1 = (s − t)(sn + sn−1t + sn−2t2 + · · · + sn−ktk + · · · + stn−1 + tn)
holds.

Remark on its proof. Apply Lemma (7): ‘formally’ substitute r = t/s and multiply both sides by sn+1.

Remark. When we want to ‘factorizing’ the expression sn − tn or sn + tn with the help of integers only, we have
these equalities below for ‘small values’ of n:

s2 − t2 = (s− t)(s+ t),
s3 − t3 = (s− t)(s2 + st+ t2), s3 + t3 = (s+ t)(s2 − st+ t2),
s4 − t4 = (s− t)(s+ t)(s2 + t2),
s5 − t5 = (s− t)(s4 + s3t+ s2t2 + st3 + t4), s5 + t5 = (s+ t)(s4 − s3t+ s2t2 − st3 + t4),
s6 − t6 = (s− t)(s+ t)(s2 + st+ t2)(s2 − st+ t2), s6 + t6 = (s2 + t2)(s4 − s2t2 + t2),

Of course, when we resort to roots of unity, we may ‘completely factorize’ sn− tn into a product of ‘linear expressions’
with the help of complex numbers. Or we may ‘factorize’ sn − tn into a product of ‘linear expressions’ and ‘quadratic
expressions’ with the help of real numbers only. (We need De Moivre’s Theorem and results about roots of unity

here.)

11. Theorem (9). (Sum of geometric progression.)

Let {bn}
∞

n=0 be a geometric progression with common ratio r. Then for each m,n ∈ N,

bm + bm+1 + bm+2 + · · ·+ bm+n =







(n+ 1)bm if r = 1

bm(rn+1 − 1)

r − 1
if r 6= 1

12. Theorem (10). (Limiting value for a sum of geometric progression.)

Let {bn}
∞

n=0 be a geometric progression with common ratio r. Suppose |r| < 1.

Then lim
n→∞

(b0 + b1 + b2 + · · ·+ bn) =
b0

1− r
.

Remark on its proof. Apply Lemma (7), and standard techniques in calculus such as the Sandwich Rule.

Further remark. In school mathematics, you were concerned with the situation in which r was real. But this
result holds even when r is not a real number.
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