MATH1050 Absolute Value and Triangle Inequality for the Reals

1. Absolute value for the reals.
Definition. (Absolute value of a real number.)

Let r be a real number.
The absolute value of r, which is denoted by |r|, is the non-negative real number defined by

= r if r>0
—r Iif r<0

Remarks.

(a) In a less formal manner we may refer to |r| is the magnitude of the real number r.

(b) This is the geometric interpretation of the definition: |r| is the distance between the point identified as 0 and
the point identified as r on the real line.

Lemma (1).

Let r € IR. The statements below hold:

(a) >0 iff |r| =r. (¢c) r=0iff |r| =0.
(b) r <0 iff |r| = —r. (d) —=Jr|<r < |rl.

Proof. Exercise in word game on the definition and the word iff.

Lemma (2).
Let r € R. The statements below hold:

@) I =12 (0) Ir| = V2.

Remark.  What is the relevance of this result? We give one example: whenever we obtain in a calculation the
expression |‘blah-blah-blah’|?, we may replace it by the expression (‘blah-blah-blah’)?, which may be easier to handle.
Proof. Letr e R.
(a) We have r > 0 or r < 0.
(Case 1.) Suppose r > 0. Then |r| = r. Therefore |r|?> = r2.
(Case 2.) Suppose 7 < 0. Then |r| = —r. Therefore |r|?> = (—r)% = r2.
Hence, in any case, |r|? = r?.

(b) We have verified that |r|? = r2. Since |r| > 0, we have |r| = \/[r]2 = V72

Lemma (3).
Let s,t € R. The equality |st| = |s||t| holds.
Proof. Let s,t € IR. We have |st|?> = (st)? = s*t? = |s||t|> = (|s]|t|)®. Then |st| = |s|[t|. (Why?)

Lemma (4).

Let r,c € IR. Suppose ¢ > 0. Then the statements below hold:

(@) |r|<ciff —c<r<e. (¢) |r| >ciff (r < —corr>c).
(b) |rl<ciff —c<r<e. (d) |r| > ciff (r < —corr>c).

Proof. Exercise.

Definition. (Absolute value function.)

The function from R to IR defined by assigning each real number to its absolute value is called the absolute value

function.
Remark.
In symbols we may denote this function by | - |, and express its ‘formula of definition’ as ‘z — |z| for each z € R’,
or equivalently as

T if >0

|z| = :

—z if <0

We may also express the ‘formula of definition’ of the function | - | as ‘|z| = V&2 for any = € R.



2. Triangle Inequality on the real line.
Lemma (5).
Suppose x,y are real numbers. Then z? + y? > 2xy. Equality holds iff x = y.

Proof. Suppose z,y are real numbers. We have (2% + y?) — 22y = (z — y)?.

(a) Since z,y are real, x — y is real. Then (x — y)? > 0. Therefore 22 + y? > 2zy.
(b) i. Suppose z = y. Then (2% + y?) — 22y = (z — y)? = (z — )2 = 0. Therefore 22 + y? = 2xy.
ii. Suppose 22 + y? = 2zy. Then 0 = (22 + y?) — 22y = (v — y)?. Therefore x —y = 0. Hence z = y.

Theorem (6). (Triangle Inequality on the real line.)
Suppose u, v are real numbers. Then |u + v| < |u| + |v|. Equality holds iff uv > 0.

Proof.
Suppose u, v are real numbers.

Then (Ju| +[0])? = [u+o* = (Jul + [v])* = (u +0)* = (Jul* + |[v]* + 2Juljv]) = (u* + v* + 2uv) = 2(juv| — uv). (Why?)
(a) We have uv < |uv|. Then (|u| + [v])? — |u+v|*> > 0.
Therefore |u + v|? < (Ju| + |v|)%.
Since |u +v| > 0 and |u| + |v| > 0, we have |u + v| < |u| + |v].
(b) i. Suppose uv > 0. Then |uv| = uv. Therefore (|u| + |v])? — |u + v|*> = 0. Hence |u + v| = |u| + |v].
ii. Suppose |u + v| = |u| + |v|. Then (|u| + |v|)? — |u+ v|?> = 0. Therefore |uv| = uv. Hence uv > 0.
Remark.
An alternative argument for this result starts in this way:

Suppose u, v are real numbers. Then u,v are both non-negative, or u,v are both non-positive, or (one of u,v is
non-negative and the other is non-positive).

Now argue ‘case by case’.

Corollary (7). (Corollary to Triangle Inequality on the real line.)
Suppose s,t are real numbers. Then | |s| — [t| | < |s —t|. Equality holds iff st > 0.

3. Appendix: Triangle Inequality on the plane.

Theorem (6) can be regarded as a special case of Theorem (8). (There are ‘higher-dimensional analogues’ of this
result.)

Theorem (8). (Triangle Inequality on the plane.)

Suppose u, v, s,t are real numbers. Then \/(u+ s)2 + (v +1)2 < Vu? +v2 + V52 + t2. Equality holds iff (ut = vs
and us > 0 and vt > 0).

Remark. This is the geometric interpretation of Theorem (8) on the coordinate plane:

Consider the parallelogram whose vertices are (0,0), (u,v), (s,t), (u+ s,v +1).

The line segment joining (0,0), (u, v) has length v/u? + v2. The line segment joining (u,v), (u+s,v-+t), which is
the same as the distance between (0,0), (s,t), has length v/s2 + ¢2. The line segment joining (0,0), (u+ s, v +t)
is of length /(u + s)2 + (v + t)2.

The sum of the first two lengths is expected to be no shorter than the last. But this is expected: the three line
segments are the three sides of the triangle with vertices (0,0), (u,v), (u+ s,v + t).

Equality holds exactly when the three points (u,v), (s,t), (v + s,v +t) are on the same ‘half-line’ with endpoint
at the origin (0,0).
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Proof. Postponed. (The ‘classical method’ is to first prove the Cauchy-Schwarz Inequality, of which Lemma (4)
may be regarded as a special case, and then obtain the Triangle Inequality as a corollary.)



