1. **Absolute value for the reals.**

Definition. (Absolute value of a real number.)

Let r be a real number.

The **absolute value** *of r, which is denoted by |r|, is the non-negative real number defined by*

$$
|r| = \begin{cases} r & \text{if } r \ge 0\\ -r & \text{if } r < 0 \end{cases}
$$

.

√ r 2*.*

Remarks.

- (a) In a less formal manner we may refer to $|r|$ is the **magnitude** of the real number *r*.
- (b) This is the geometric interpretation of the definition: *|r|* is the distance between the point identified as 0 and the point identified as *r* on the real line.

Lemma (1).

Let $r \in \mathbb{R}$ *. The statements below hold:*

(a) $r \geq 0$ *iff* $|r| = r$. (b) $r < 0$ *iff* $|r| = -r$. (c) $r = 0$ *iff* $|r| = 0$. $(d) -|r| < r < |r|$.

Proof. Exercise in word game on the definition and the word *iff*.

Lemma (2).

Let $r \in \mathbb{R}$ *. The statements below hold:* (a) $|r|^2 = r^2$ *.* (b) *|r|* =

Remark. What is the relevance of this result? We give one example: whenever we obtain in a calculation the expression $|\text{`blah-blah'}|^2$, we may replace it by the expression $(\text{`blah-blah'})^2$, which may be easier to handle. **Proof.** Let $r \in \mathbb{R}$.

(a) We have $r \geq 0$ or $r < 0$.

(Case 1.) Suppose $r \ge 0$. Then $|r| = r$. Therefore $|r|^2 = r^2$. (Case 2.) Suppose $r < 0$. Then $|r| = -r$. Therefore $|r|^2 = (-r)^2 = r^2$. Hence, in any case, $|r|^2 = r^2$.

(b) We have verified that $|r|^2 = r^2$. Since $|r| \ge 0$, we have $|r| = \sqrt{|r|^2} = \sqrt{r^2}$.

Lemma (3).

Let $s, t \in \mathbb{R}$ *. The equality* $|st| = |s||t|$ *holds.* **Proof.** Let $s, t \in \mathbb{R}$. We have $|st|^2 = (st)^2 = s^2t^2 = |s|^2|t|^2 = (|s||t|)^2$. Then $|st| = |s||t|$. (Why?)

Lemma (4).

Proof. Exercise.

Definition. (Absolute value function.)

The function from R *to* R *defined by assigning each real number to its absolute value is called the* **absolute value function***.*

Remark.

In symbols we may denote this function by $|\cdot|$, and express its 'formula of definition' as ' $x \mapsto |x|$ for each $x \in \mathbb{R}$ ', or equivalently as

$$
|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}
$$

We may also express the 'formula of definition' of the function $|\cdot|$ as ' $|x| = \sqrt{x^2}$ for any $x \in \mathbb{R}$ '.

2. **Triangle Inequality on the real line. Lemma (5).**

Suppose x, *y* are real numbers. Then $x^2 + y^2 \ge 2xy$. Equality holds iff $x = y$. **Proof.** Suppose *x*, *y* are real numbers. We have $(x^2 + y^2) - 2xy = (x - y)^2$.

- (a) Since *x*, *y* are real, $x y$ is real. Then $(x y)^2 \ge 0$. Therefore $x^2 + y^2 \ge 2xy$.
- (b) i. Suppose $x = y$. Then $(x^2 + y^2) 2xy = (x y)^2 = (x x)^2 = 0$. Therefore $x^2 + y^2 = 2xy$. ii. Suppose $x^2 + y^2 = 2xy$. Then $0 = (x^2 + y^2) - 2xy = (x - y)^2$. Therefore $x - y = 0$. Hence $x = y$.

Theorem (6). (Triangle Inequality on the real line.)

Suppose u, v are real numbers. Then $|u + v| \leq |u| + |v|$. Equality holds iff $uv \geq 0$. **Proof.**

Suppose *u, v* are real numbers.

Then
$$
(|u| + |v|)^2 - |u + v|^2 = (|u| + |v|)^2 - (u + v)^2 = (|u|^2 + |v|^2 + 2|u||v|) - (u^2 + v^2 + 2uv) = 2(|uv| - uv)
$$
. (Why?)

- (a) We have $uv \le |uv|$. Then $(|u| + |v|)^2 |u + v|^2 \ge 0$. Therefore $|u + v|^2 \le (|u| + |v|)^2$. Since $|u + v| \ge 0$ and $|u| + |v| \ge 0$, we have $|u + v| \le |u| + |v|$.
- (b) i. Suppose $uv \ge 0$. Then $|uv| = uv$. Therefore $(|u| + |v|)^2 |u + v|^2 = 0$. Hence $|u + v| = |u| + |v|$. ii. Suppose $|u + v| = |u| + |v|$. Then $(|u| + |v|)^2 - |u + v|^2 = 0$. Therefore $|uv| = uv$. Hence $uv \ge 0$.

Remark.

An alternative argument for this result starts in this way:

Suppose u, v are real numbers. Then u, v are both non-negative, or u, v are both non-positive, or (one of u, v is non-negative and the other is non-positive).

Now argue 'case by case'.

Corollary (7). (Corollary to Triangle Inequality on the real line.)

Suppose s, t are real numbers. Then $| |s| - |t| | \le |s - t|$. Equality holds iff $st \ge 0$.

3. **Appendix: Triangle Inequality on the plane.**

Theorem (6) can be regarded as a special case of Theorem (8). (There are 'higher-dimensional analogues' of this result.)

Theorem (8). (Triangle Inequality on the plane.)

Suppose u, v, s, t are real numbers. Then $\sqrt{(u+s)^2 + (v+t)^2} \le \sqrt{u^2 + v^2} + \sqrt{s^2 + t^2}$. Equality holds iff $(ut = vs$ *and* $us \geq 0$ *and* $vt \geq 0$ *).*

Remark. This is the geometric interpretation of Theorem (8) on the coordinate plane:

Consider the parallelogram whose vertices are $(0,0)$, (u, v) , (s, t) , $(u + s, v + t)$.

The line segment joining $(0,0)$, (u, v) has length $\sqrt{u^2 + v^2}$. The line segment joining (u, v) , $(u+s, v+t)$, which is the same as the distance between $(0,0)$, (s,t) , has length $\sqrt{s^2+t^2}$. The line segment joining $(0,0)$, $(u+s,v+t)$ is of length $\sqrt{(u+s)^2 + (v+t)^2}$.

The sum of the first two lengths is expected to be no shorter than the last. But this is expected: the three line segments are the three sides of the triangle with vertices $(0,0), (u,v), (u+s,v+t)$.

Equality holds exactly when the three points (u, v) , (s, t) , $(u + s, v + t)$ are on the same 'half-line' with endpoint at the origin $(0,0)$.

Proof. Postponed. (The 'classical method' is to first prove the *Cauchy-Schwarz Inequality*, of which Lemma (4) may be regarded as a special case, and then obtain the Triangle Inequality as a corollary.)