
MATH1050 Absolute Value and Triangle Inequality for the Reals

1. Absolute value for the reals.
Definition. (Absolute value of a real number.)
Let r be a real number.
The absolute value of r, which is denoted by |r|, is the non-negative real number defined by

|r| =
{

r if r ≥ 0
− r if r < 0

.

Remarks.
(a) In a less formal manner we may refer to |r| is the magnitude of the real number r.
(b) This is the geometric interpretation of the definition: |r| is the distance between the point identified as 0 and

the point identified as r on the real line.

Lemma (1).
Let r ∈ R. The statements below hold:
(a) r ≥ 0 iff |r| = r.
(b) r ≤ 0 iff |r| = −r.

(c) r = 0 iff |r| = 0.
(d) −|r| ≤ r ≤ |r|.

Proof. Exercise in word game on the definition and the word iff.

Lemma (2).
Let r ∈ R. The statements below hold:
(a) |r|2 = r2. (b) |r| =

√
r2.

Remark. What is the relevance of this result? We give one example: whenever we obtain in a calculation the
expression |‘blah-blah-blah’|2, we may replace it by the expression (‘blah-blah-blah’)2, which may be easier to handle.
Proof. Let r ∈ R.
(a) We have r ≥ 0 or r < 0.

(Case 1.) Suppose r ≥ 0. Then |r| = r. Therefore |r|2 = r2.
(Case 2.) Suppose r < 0. Then |r| = −r. Therefore |r|2 = (−r)2 = r2.

Hence, in any case, |r|2 = r2.
(b) We have verified that |r|2 = r2. Since |r| ≥ 0, we have |r| =

√
|r|2 =

√
r2.

Lemma (3).
Let s, t ∈ R. The equality |st| = |s||t| holds.
Proof. Let s, t ∈ R. We have |st|2 = (st)2 = s2t2 = |s|2|t|2 = (|s||t|)2. Then |st| = |s||t|. (Why?)

Lemma (4).
Let r, c ∈ R. Suppose c ≥ 0. Then the statements below hold:
(a) |r| ≤ c iff −c ≤ r ≤ c.
(b) |r| < c iff −c < r < c.

(c) |r| ≥ c iff (r ≤ −c or r ≥ c).
(d) |r| > c iff (r < −c or r > c).

Proof. Exercise.

Definition. (Absolute value function.)
The function from R to R defined by assigning each real number to its absolute value is called the absolute value
function.
Remark.
In symbols we may denote this function by | · |, and express its ‘formula of definition’ as ‘x 7−→ |x| for each x ∈ R’,
or equivalently as

|x| =
{

x if x ≥ 0
− x if x < 0

We may also express the ‘formula of definition’ of the function | · | as ‘|x| =
√
x2 for any x ∈ R’.
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2. Triangle Inequality on the real line.
Lemma (5).
Suppose x, y are real numbers. Then x2 + y2 ≥ 2xy. Equality holds iff x = y.
Proof. Suppose x, y are real numbers. We have (x2 + y2)− 2xy = (x− y)2.

(a) Since x, y are real, x− y is real. Then (x− y)2 ≥ 0. Therefore x2 + y2 ≥ 2xy.
(b) i. Suppose x = y. Then (x2 + y2)− 2xy = (x− y)2 = (x− x)2 = 0. Therefore x2 + y2 = 2xy.

ii. Suppose x2 + y2 = 2xy. Then 0 = (x2 + y2)− 2xy = (x− y)2. Therefore x− y = 0. Hence x = y.

Theorem (6). (Triangle Inequality on the real line.)
Suppose u, v are real numbers. Then |u+ v| ≤ |u|+ |v|. Equality holds iff uv ≥ 0.
Proof.
Suppose u, v are real numbers.
Then (|u|+ |v|)2 − |u+ v|2 = (|u|+ |v|)2 − (u+ v)2 = (|u|2 + |v|2 + 2|u||v|)− (u2 + v2 + 2uv) = 2(|uv| − uv). (Why?)

(a) We have uv ≤ |uv|. Then (|u|+ |v|)2 − |u+ v|2 ≥ 0.
Therefore |u+ v|2 ≤ (|u|+ |v|)2.
Since |u+ v| ≥ 0 and |u|+ |v| ≥ 0, we have |u+ v| ≤ |u|+ |v|.

(b) i. Suppose uv ≥ 0. Then |uv| = uv. Therefore (|u|+ |v|)2 − |u+ v|2 = 0. Hence |u+ v| = |u|+ |v|.
ii. Suppose |u+ v| = |u|+ |v|. Then (|u|+ |v|)2 − |u+ v|2 = 0. Therefore |uv| = uv. Hence uv ≥ 0.

Remark.
An alternative argument for this result starts in this way:

Suppose u, v are real numbers. Then u, v are both non-negative, or u, v are both non-positive, or (one of u, v is
non-negative and the other is non-positive).

Now argue ‘case by case’.

Corollary (7). (Corollary to Triangle Inequality on the real line.)
Suppose s, t are real numbers. Then | |s| − |t| | ≤ |s− t|. Equality holds iff st ≥ 0.

3. Appendix: Triangle Inequality on the plane.
Theorem (6) can be regarded as a special case of Theorem (8). (There are ‘higher-dimensional analogues’ of this
result.)

Theorem (8). (Triangle Inequality on the plane.)
Suppose u, v, s, t are real numbers. Then

√
(u+ s)2 + (v + t)2 ≤

√
u2 + v2 +

√
s2 + t2. Equality holds iff (ut = vs

and us ≥ 0 and vt ≥ 0).
Remark. This is the geometric interpretation of Theorem (8) on the coordinate plane:

Consider the parallelogram whose vertices are (0, 0), (u, v), (s, t), (u+ s, v + t).
The line segment joining (0, 0), (u, v) has length

√
u2 + v2. The line segment joining (u, v), (u+s, v+ t), which is

the same as the distance between (0, 0), (s, t), has length
√
s2 + t2. The line segment joining (0, 0), (u+ s, v+ t)

is of length
√
(u+ s)2 + (v + t)2.

The sum of the first two lengths is expected to be no shorter than the last. But this is expected: the three line
segments are the three sides of the triangle with vertices (0, 0), (u, v), (u+ s, v + t).
Equality holds exactly when the three points (u, v), (s, t), (u+ s, v + t) are on the same ‘half-line’ with endpoint
at the origin (0, 0).

x

y

0

(u, v)

(s, t)

(u+ s, v + t)

Proof. Postponed. (The ‘classical method’ is to first prove the Cauchy-Schwarz Inequality, of which Lemma (4)
may be regarded as a special case, and then obtain the Triangle Inequality as a corollary.)
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