1. Absolute value for the reals.

Definition. (Absolute value of a real number.)

Let r be a real number.

The absolute value of r, which is denoted by |r|, is the non-negative real number defined by

$$|r|=\left\{egin{array}{ll} r & ext{if } r\geq 0 \ -r & ext{if } r<0 \end{array}
ight.$$

Remarks.

- (a) In a less formal manner we may refer to |r| is the **magnitude** of the real number r.
- (b) This is the geometric interpretation of the definition: |r| is the distance between the point identified as 0 and the point identified as r on the real line.

(Case 1). Suppose
$$t \geq 0$$
. Then:

(Case 2). Suppose $t < 0$. Then:

(In is the distance between 0 and r ,

and hence $|r| = 0 - r = -r$.

Absolute value for the reals.

Definition. (Absolute value of a real number.)

Let r be a real number.

The absolute value of r, which is denoted by |r|, is the non-negative real number defined by

$$|r| = \begin{cases} r & \text{if } r \ge 0 \\ -r & \text{if } r < 0 \end{cases}.$$

Remarks.

- (a) In a less formal manner we may refer to |r| is the **magnitude** of the real number r.
- (b) This is the geometric interpretation of the definition: |r| is the distance between the point identified as 0 and the point identified as r on the real line.

Lemma (1).

Let $r \in \mathbb{R}$. The statements below hold:

(a)
$$r \ge 0$$
 iff $|r| = r$.
(b) $r \le 0$ iff $|r| = -r$.
(c) $r = 0$ iff $|r| = 0$.
(d) $-|r| \le r \le |r|$.

(b)
$$r \le 0 \text{ iff } |r| = -r.$$
 (d) $-|r| \le r \le |r|.$

Exercise in word game on the definition and the word *iff*. Proof.

Lemma (2).

Let $r \in \mathbb{R}$. The statements below hold:

(a)
$$|r|^2 = r^2$$
.

(b)
$$|r| = \sqrt{r^2}$$
.

Remark.

What is the relevance of Lemma (2)? Here is one example:

(a) Whenever we obtain in a calculation I' blak-blak 12,

we may replace this expression by (blah-blah-blah')2,

Which may be easier to handle.

Lemma (2).

Let $r \in \mathbb{R}$. The statements below hold:

(a)
$$|r|^2 = r^2$$
.

(b)
$$|r| = \sqrt{r^2}$$
.

Proof.

Let $r \in \mathbb{R}$.

(a) We have $r \ge 0$ or r < 0.

(Case 1.) Suppose $r \ge 0$. Then |r| = r. Therefore $|r|^2 = r^2$.

(Case 2.) Suppose r < 0. Then |r| = -r. Therefore $|r|^2 = (-r)^2 = r^2$.

Hence, in any case, $|r|^2 = r^2$.

(b) We have verified that $|r|^2 = r^2$. Since $|r| \ge 0$, we have $|r| = \sqrt{|r|^2} = \sqrt{r^2}$.

Lemma (3).

Let $s, t \in \mathbb{R}$. The equality |st| = |s||t| holds.

Proof.

Let $s, t \in \mathbb{R}$. We have $|st|^2 = (st)^2 = s^2t^2 = |s|^2|t|^2 = (|s||t|)^2$. Then |st| = |s||t|. (Why?)

Lemma (4).

Let $r, c \in \mathbb{R}$. Suppose $c \geq 0$. Then the statements below hold:

- (a) $|r| \le c$ iff $-c \le r \le c$.
- (b) |r| < c iff -c < r < c.
- (c) $|r| \ge c$ iff $(r \le -c \text{ or } r \ge c)$.
- (d) |r| > c iff (r < -c or r > c).

Geometric interpretation? Below is that for @; how about others?

a) The two descriptions in blue, red on r, c one the same:

'The distance between 0, r as points in the real line is at most c.'

The position of r in the real line is within the position -c, c.

Distance between Position of each such
O and each such
point D at most c. -c and c.

Lemma (4).

Let $r, c \in \mathbb{R}$. Suppose $c \geq 0$. Then the statements below hold:

- (a) $|r| \le c$ iff $-c \le r \le c$.
- (b) |r| < c iff -c < r < c.
- (c) $|r| \ge c$ iff $(r \le -c \text{ or } r \ge c)$.
- (d) |r| > c iff (r < -c or r > c).

Proof. Exercise.

Definition. (Absolute value function.)

The function from \mathbb{R} to \mathbb{R} defined by assigning each real number to its absolute value is called the absolute value function.

Remark.

In symbols we may denote this function by $|\cdot|$, and express its 'formula of definition' as ' $x \mapsto |x|$ for each $x \in \mathbb{R}$ ', or equivalently as

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

We may also express the 'formula of definition' of the function $|\cdot|$ as ' $|x| = \sqrt{x^2}$ for any $x \in \mathbb{R}$ '.

2. Triangle Inequality on the real line.

Lemma (5).

Suppose x, y are real numbers.

Then $x^2 + y^2 \ge 2xy$.

Equality holds iff x = y.

Proof. Suppose x, y are real numbers.

We have $(x^2 + y^2) - 2xy = (x - y)^2$.

(a) Since x, y are real, x - y is real.

Then $(x-y)^2 \ge 0$.

Therefore $x^2 + y^2 \ge 2xy$.

(b) i. Suppose x = y.

Then $(x^2 + y^2) - 2xy = (x - y)^2 = (x - x)^2 = 0$.

Therefore $x^2 + y^2 = 2xy$.

ii. Suppose $x^2 + y^2 = 2xy$.

Then $0 = (x^2 + y^2) - 2xy = (x - y)^2$.

Therefore x - y = 0. Hence x = y.

Theorem (6). (Triangle Inequality on the real line.)

Suppose u, v are real numbers. Then $|\underline{u+v}| \leq |\underline{u}| + |\underline{v}|$. Equality holds iff $\underline{uv} \geq 0$.

Proof.

Suppose u, v one teal numbers. Then $(|u|+|v|)^2 - |u+v|^2$ = (|u|+|v|)2 - (u+v)2 [Lemma(2)] = (|u|2+1V12+2|u|1V1) $\left[\frac{\alpha pp \left(x d \right)}{\alpha pp \left(x d \right)} - \left(\frac{\alpha^2 + v^2 + 2 u v}{2} \right) \right]$ > = 2 (|u| |v| - uv) exposed: 3 2 (luv 1 - uv) (a) We have uv \(|uv|. Then (|u|+|v|) = |u+v|2. (why?) Since 14+1/20 and 14/11/20, we have IU+VI = IUI+IVI.

Remark. Alternative argument?

(b)(i). Suppose uv≥0. Then | uv | = uv (by dephition). Therefore $(|u|+|v|)^2 - |u+v|^2 = 2(|uv|-uv) = 0$ Hence 14+11 = 141+111. (why?) (ii) Suppose 14+1/1. 0 = (|u|+|v|)2 - |u+v|2 = 2(|uv|-uv) Therefore InvI=uv Hence uv≥o(by Lemma(1).).

Corollary (7). (Corollary to Triangle Inequality on the real line.)

Suppose s, t are real numbers. Then $|s| - |t| \le |s - t|$. Equality holds iff $st \ge 0$.

3. Appendix: Triangle Inequality on the plane.

Theorem (6) can be regarded as a special case of Theorem (8).

Theorem (8). (Triangle Inequality on the plane.)

Suppose u, v, s, t are real numbers.

Then
$$\sqrt{(u+s)^2 + (v+t)^2} \le \sqrt{u^2 + v^2} + \sqrt{s^2 + t^2}$$
.

Equality holds iff $(ut = vs \text{ and } us \geq 0 \text{ and } vt \geq 0)$.

Remark. This is the geometric interpretation of Theorem (7) on the coordinate plane:

Proof. Postponed.