MATH1050 Examples of proofs of statements with conclusion '... iff ...'

1. Consider the pair of statements (\dagger) , (\ddagger) of the form below:

- (†) 'Let/suppose blih-blih. Suppose blah-blah-blah. Then bleh-bleh.'
- (‡) 'Let/suppose blih-blih. Suppose bleh-bleh. Then blah-blah.'

When want to state that both of (\dagger) , (\ddagger) are to hold simultaneously, we may combine them into one statement of the form

• 'Let/suppose blih-blih-blih. blah-blah-blah iff bleh-bleh-bleh.'

When one or both of 'blah-blah', 'bleh-bleh' is very lengthy, we may write in this way:

- 'Let/suppose blih-blih. The following statements are logically equivalent:
 - (1) Blah-blah-blah.
 - (2) Bleh-bleh-bleh.'

The safest way for proving such a statement is to return to its original meaning: prove (\dagger) , (\ddagger) separately. Below are some illustrations on the general format of proofs for such statements.

2. Statement (a).

Suppose x, y are positive real numbers. Then $\frac{x+y}{2} = \sqrt{xy}$ iff x = y.

Proof of Statement (a).

Suppose x, y are positive real numbers. (Then $\sqrt{x}, \sqrt{y}, \sqrt{xy}, \sqrt{x} - \sqrt{y}$ are well-defined as real numbers.)

• ['\(\equiv-part'.])
Suppose
$$x = y$$
.
Then $\frac{x+y}{2} = \frac{2x}{2} = x$.
Since x is positive, $\sqrt{x^2} = x$. Then $\sqrt{xy} = \sqrt{x^2} = x$.
Hence $\frac{x+y}{2} = x = \sqrt{xy}$.
• ['\(\equiv-part'.])
Suppose $\frac{x+y}{2} = \sqrt{xy}$.
Since x, y are positive, we have $(\sqrt{x})^2 = x$ and $(\sqrt{y})^2 = y$. Also, $\sqrt{xy} = \sqrt{x}\sqrt{y}$.
Then $(\sqrt{x})^2 + (\sqrt{y})^2 = x + y = 2\sqrt{xy} = 2\sqrt{x}\sqrt{y}$.
Therefore $(\sqrt{x} - \sqrt{y})^2 = (\sqrt{x})^2 + (\sqrt{y})^2 - 2\sqrt{x}\sqrt{y} = 0$.
Hence $\sqrt{x} - \sqrt{y} = 0$.
Now we have $\sqrt{x} = \sqrt{y}$. Therefore $x = (\sqrt{x})^2 = (\sqrt{y})^2 = y$.

3. Statement (b).

Let \mathbf{x}, \mathbf{y} be non-zero vectors in the real *n*-dimensional space. The following statements are logically equivalent:

- (1) There exist some real numbers κ, λ , not both zero, such that $\kappa \mathbf{x} + \lambda \mathbf{y} = \mathbf{0}$.
- (2) $|\langle \mathbf{x}, \mathbf{y} \rangle| = \|\mathbf{x}\| \cdot \|\mathbf{y}\|.$

Remark. $\langle \mathbf{x}, \mathbf{y} \rangle$ is the dot product of the vectors \mathbf{x}, \mathbf{y} . $\|\mathbf{x}\|, \|\mathbf{y}\|$ are the respective norms of the vectors \mathbf{x}, \mathbf{y} .

Proof of Statement (b).

Let \mathbf{x} , \mathbf{y} be vectors in the real *n*-dimensional space.

• $[`(1)\Rightarrow(2)'?]$ Suppose there exist some real numbers κ, λ , not both zero, such that $\kappa \mathbf{x} + \lambda \mathbf{y} = \mathbf{0}$. Without loss of generality, suppose $\lambda \neq 0$. Then $\mathbf{y} = -\frac{\kappa}{\lambda} \mathbf{x}$. We have

$$|\langle \mathbf{x}, \mathbf{y} \rangle| = |\langle \mathbf{x}, -\frac{\kappa}{\lambda} \mathbf{x} \rangle| = |-\frac{\kappa}{\lambda} \langle \mathbf{x}, \mathbf{x} \rangle| = \left|-\frac{\kappa}{\lambda}\right| \|\mathbf{x}\|^2 = \|\mathbf{x}\| \cdot \|-\frac{\kappa}{\lambda} \mathbf{x}\| = \|\mathbf{x}\| \cdot \|\mathbf{y}\|$$

• $[`(2) \Rightarrow (1)'?]$ Suppose $|\langle \mathbf{x}, \mathbf{y} \rangle| = ||\mathbf{x}|| \cdot ||\mathbf{y}||$. Then $\langle \mathbf{x}, \mathbf{y} \rangle = ||\mathbf{x}|| \cdot ||\mathbf{y}||$ or $\langle \mathbf{x}, \mathbf{y} \rangle = -||\mathbf{x}|| \cdot ||\mathbf{y}||$. * (Case 1). Suppose $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \cdot \|\mathbf{y}\|$.

Define $\kappa = \|\mathbf{y}\|, \lambda = -\|\mathbf{x}\|$. Since \mathbf{x}, \mathbf{y} are non-zero vectors, κ, λ are non-zero real numbers.

$$\begin{aligned} \|\kappa \mathbf{x} + \lambda \mathbf{y}\|^2 &= \langle \kappa \mathbf{x} + \lambda \mathbf{y}, \kappa \mathbf{x} + \lambda \mathbf{y} \rangle \\ &= \kappa^2 \langle \mathbf{x}, \mathbf{x} \rangle + \kappa \lambda \langle \mathbf{x}, \mathbf{y} \rangle + \lambda \kappa \langle \mathbf{y}, \mathbf{x} \rangle + \lambda^2 \langle \mathbf{y}, \mathbf{y} \rangle \\ &= \kappa^2 \|\mathbf{x}\|^2 + 2\kappa \lambda \langle \mathbf{x}, \mathbf{y} \rangle + \lambda^2 \|\mathbf{y}\|^2 \\ &= \kappa^2 \lambda^2 + 2\kappa \lambda \|\mathbf{x}\| \cdot \|\mathbf{y}\| + \kappa^2 \mu^2 \\ &= \kappa^2 \lambda^2 - 2\kappa^2 \lambda^2 + \kappa^2 \lambda^2 \\ &= 0 \end{aligned}$$

Then $\|\kappa \mathbf{x} + \lambda \mathbf{y}\| = 0$. Therefore $\kappa \mathbf{x} + \lambda \mathbf{y} = \mathbf{0}$. * (Case 2). Suppose $\langle \mathbf{x}, \mathbf{y} \rangle = -\|\mathbf{x}\| \cdot \|\mathbf{y}\|$. Define $\kappa = \|\mathbf{y}\|, \lambda = \|\mathbf{x}\|$. Modifying the arguments in (Case 1), we also deduce that $\kappa \mathbf{x} + \lambda \mathbf{y} = \mathbf{0}$.

- 4. Here are some other examples of such statements in school mathematics.
 - (α) Let $\triangle ABC$ be a triangle. $\angle ACB$ is a right angle iff $AB^2 = AC^2 + BC^2$. Remark. In this statement we have combined the two true statements known as **Pythagoras' Theorem** and the **Converse of Pythagoras' Theorem**.
 - (β) Let $\triangle ABC$ be a triangle. $\angle ACB$ is a right angle iff AB passes through the centre of the circumcircle of $\triangle ABC$.
 - (γ) Let f(z) be a polynomial with real/complex coefficients and indeterminate z, and c be a real/complex number. The polynomial z - c is a factor of the polynomial f(z) iff f(c) = 0. Remark. Incorporated in this statement is the result known as the **Factor Theorem**.
 - (δ) Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of complex numbers. The statements below are logically equivalent:
 - (1) $\{a_n\}_{n=0}^{\infty}$ is an arithmetic progression. (There exists some complex number d such that for any $n \in \mathbb{N}$, $a_n = a_0 + nd$.)

(2) For any
$$n \in \mathbb{N}$$
, $a_{n+1} = \frac{a_n + a_{n+2}}{2}$.

- 5. Many results in your *linear algebra* course are statements of this form. Here are some examples.
 - (α) Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n \in \mathbb{R}^m$. The statements below are logically equivalent:
 - (1) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are linearly dependent.
 - (2) One of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ is a linear combination of the others.
 - (β) Let A be an $(n \times n)$ -square matrix with real entries. The statements below are logically equivalent:
 - (1) A is non-singular. (The zerovector is the only element of the null space of A.)
 - (2) A is row-equivalent to the identity matrix I_n .
 - (3) A is invertible.
 - (4) For any $\mathbf{b} \in \mathbb{R}^n$, the system $A\mathbf{x} = \mathbf{b}$ has a unique solution.
 - (5) The columns of A constitute a basis for \mathbb{R}^n .
 - (6) $\det(A) \neq 0$.

Watch out how these results are proved in your *linear algebra* course.