
MATH1050 Examples of proofs of statements with conclusion ‘... iff ...’

1. Consider the pair of statements (†), (‡) of the form below:

(†) ‘Let/suppose blih-blih-blih. Suppose blah-blah-blah. Then bleh-bleh-bleh.’
(‡) ‘Let/suppose blih-blih-blih. Suppose bleh-bleh-bleh. Then blah-blah-blah.’

When want to state that both of (†), (‡) are to hold simultaneously, we may combine them into one statement of the
form

• ‘Let/suppose blih-blih-blih. blah-blah-blah iff bleh-bleh-bleh.’

When one or both of ‘blah-blah-blah’, ‘bleh-bleh-bleh’ is very lengthy, we may write in this way:

• ‘Let/suppose blih-blih-blih. The following statements are logically equivalent:
(1) Blah-blah-blah.
(2) Bleh-bleh-bleh.’

The safest way for proving such a statement is to return to its original meaning: prove (†), (‡) separately.
Below are some illustrations on the general format of proofs for such statements.

2. Statement (a).

Suppose x, y are positive real numbers. Then x+ y

2
=

√
xy iff x = y.

Proof of Statement (a).

Suppose x, y are positive real numbers. (Then
√
x,

√
y,
√
xy,

√
x−√

y are well-defined as real numbers.)
• [‘⇐-part’.]

Suppose x = y.
Then x+ y

2
=

2x

2
= x.

Since x is positive,
√
x2 = x. Then √

xy =
√
x2 = x.

Hence x+ y

2
= x =

√
xy.

• [‘⇒-part’.]
Suppose x+ y

2
=

√
xy.

Since x, y are positive, we have (
√
x)2 = x and (

√
y)2 = y. Also, √xy =

√
x
√
y.

Then (
√
x)2 + (

√
y)2 = x+ y = 2

√
xy = 2

√
x
√
y.

Therefore (
√
x−√

y)2 = (
√
x)2 + (

√
y)2 − 2

√
x
√
y = 0.

Hence
√
x−√

y = 0.
Now we have

√
x =

√
y. Therefore x = (

√
x)2 = (

√
y)2 = y.

3. Statement (b).

Let x, y be non-zero vectors in the real n-dimensional space. The following statements are logically equivalent:
(1) There exist some real numbers κ, λ, not both zero, such that κx+ λy = 0.
(2) |⟨x,y⟩| = ∥x∥ · ∥y∥.

Remark. ⟨x,y⟩ is the dot product of the vectors x, y. ∥x∥, ∥y∥ are the respective norms of the vectors x, y.

Proof of Statement (b).

Let x, y be vectors in the real n-dimensional space.
• [‘(1)⇒(2)’?]

Suppose there exist some real numbers κ, λ, not both zero, such that κx+ λy = 0.
Without loss of generality, suppose λ ̸= 0. Then y = −κ

λ
x. We have

|⟨x,y⟩| = |⟨x,−κ

λ
x⟩| = | − κ

λ
⟨x,x⟩| =

∣∣∣−κ

λ

∣∣∣ ∥x∥2 = ∥x∥ · ∥ − κ

λ
x∥ = ∥x∥ · ∥y∥

• [‘(2)⇒(1)’?]
Suppose |⟨x,y⟩| = ∥x∥ · ∥y∥. Then ⟨x,y⟩ = ∥x∥ · ∥y∥ or ⟨x,y⟩ = −∥x∥ · ∥y∥.
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∗ (Case 1). Suppose ⟨x,y⟩ = ∥x∥ · ∥y∥.
Define κ = ∥y∥, λ = −∥x∥. Since x, y are non-zero vectors, κ, λ are non-zero real numbers.

∥κx+ λy∥2 = ⟨κx+ λy, κx+ λy⟩
= κ2⟨x,x⟩+ κλ⟨x,y⟩+ λκ⟨y,x⟩+ λ2⟨y,y⟩
= κ2∥x∥2 + 2κλ⟨x,y⟩+ λ2∥y∥2

= κ2λ2 + 2κλ∥x∥ · ∥y∥+ κ2µ2

= κ2λ2 − 2κ2λ2 + κ2λ2

= 0

Then ∥κx+ λy∥ = 0. Therefore κx+ λy = 0.
∗ (Case 2). Suppose ⟨x,y⟩ = −∥x∥ · ∥y∥.

Define κ = ∥y∥, λ = ∥x∥.
Modifying the arguments in (Case 1), we also deduce that κx+ λy = 0.

4. Here are some other examples of such statements in school mathematics.

(α) Let △ABC be a triangle. ∠ACB is a right angle iff AB2 = AC2 +BC2.
Remark. In this statement we have combined the two true statements known as Pythagoras’ Theorem and the
Converse of Pythagoras’ Theorem.

(β) Let △ABC be a triangle.
∠ACB is a right angle iff AB passes through the centre of the circumcircle of △ABC.

(γ) Let f(z) be a polynomial with real/complex coefficients and indeterminate z, and c be a real/complex number.
The polynomial z − c is a factor of the polynomial f(z) iff f(c) = 0.
Remark. Incorporated in this statement is the result known as the Factor Theorem.

(δ) Let {an}∞n=0 be an infinite sequence of complex numbers. The statements below are logically equivalent:
(1) {an}∞n=0 is an arithmetic progression. (There exists some complex number d such that for any n ∈ N,

an = a0 + nd.)

(2) For any n ∈ N, an+1 =
an + an+2

2
.

5. Many results in your linear algebra course are statements of this form. Here are some examples.

(α) Let u1,u2, · · · ,un ∈ Rm. The statements below are logically equivalent:
(1) u1,u2, · · · ,un are linearly dependent.
(2) One of u1,u2, · · · ,un is a linear combination of the others.

(β) Let A be an (n× n)-square matrix with real entries. The statements below are logically equivalent:
(1) A is non-singular. (The zerovector is the only element of the null space of A.)
(2) A is row-equivalent to the identity matrix In.
(3) A is invertible.
(4) For any b ∈ Rn, the system Ax = b has a unique solution.
(5) The columns of A constitute a basis for Rn.
(6) det(A) ̸= 0.

Watch out how these results are proved in your linear algebra course.
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