1. Consider the pair of statements (\dagger) , (\dagger) of the form below:

(†) 'Let/suppose blih-blih-blih. Suppose blah-blah-blah. Then bleh-bleh-bleh.' (\ddagger) 'Let/suppose blih-blih-blih. Suppose bleh-bleh-bleh. Then blah-blah-blah.' When want to state that both of (\dagger) , (\dagger) are to hold simultaneously, we may combine them into one statement of the form

 \bullet 'Let/suppose blih-blih-blih. blah-blah-blah iff bleh-bleh-bleh.'

When one or both of 'blah-blah-blah', 'bleh-bleh-bleh' is very lengthy, we may write in this way:

- \bullet 'Let/suppose blih-blih-blih. The following statements are logically equivalent:
	- (1) Blah-blah-blah.
- (2) Bleh-bleh-bleh.'

The safest way for proving such a statement is to return to its original meaning: prove (\dagger) , (\dagger) separately.

2. Statement (a).

Suppose x, y are positive real numbers. Then $\frac{x+y}{2} = \sqrt{xy}$ iff $x = y$.

Proof of Statement (a).

Suppose x, y are positive real numbers. (Then $\sqrt{x}, \sqrt{y}, \sqrt{xy}, \sqrt{x} - \sqrt{y}$ are welldefined as real numbers.)

•
$$
[\Leftrightarrow -part']
$$
 Suppose $x = y$. $\lbrack \sqrt{e} \text{ want to deduce } \frac{x+y}{2} = \sqrt{xy}$.
\nThen $\frac{x+y}{2} = \frac{2x}{2} = x$.
\nSince x is positive, $\sqrt{x^2} = x$. Then $\sqrt{xy} = \sqrt{x^2} = x$.
\nHence $\frac{x+y}{2} = x = \sqrt{xy}$.

$$
\bullet \left[\begin{array}{l} \hline \Rightarrow \text{part'} \end{array} \right] \text{ Suppose } \frac{x+y}{2} = \sqrt{xy}. \quad \left[\begin{array}{l} \hline \text{left} & \text{left} & \text{left} & \text{left} & \text{left} & \text{left} \\ \hline \text{left} & \text{right} & \text{right} & \text{right} & \text{right} \end{array} \right] \right]
$$
\n
$$
\text{Since } x, y \text{ are positive, we have } \left(\sqrt{x} \right)^2 = x \text{ and } \left(\sqrt{x} \right)^2 = y \text{ and } \left(\sqrt{x} \cdot \sqrt{y} \right) = \sqrt{x}y
$$
\n
$$
\text{Then } \left(\sqrt{x} \right)^2 + \left(\sqrt{y} \right)^2 = x + y = 2 \sqrt{x}y = 2 \sqrt{x} \cdot \sqrt{y}
$$
\n
$$
\text{Therefore } \left(\sqrt{x} - \sqrt{y} \right)^2 = \left(\sqrt{x} \right)^2 + \left(\sqrt{y} \right)^2 - 2 \sqrt{x} \cdot \sqrt{y} = 0
$$
\n
$$
\text{If } x \text{ are } \sqrt{x} - \sqrt{y} = 0.
$$
\n
$$
\text{Now we have } \sqrt{x} = \sqrt{y}. \quad \text{Therefore } x = \left(\sqrt{x} \right)^2 = \left(\sqrt{y} \right)^2 = y \text{ and } \left(\sqrt{y} \right)^2 = 0
$$

$3.$ Statement (b).

Let x , y be non-zero vectors in the real *n*-dimensional space. The following statements are logically equivalent:

(1) There exist some real numbers κ, λ , not both zero, such that $\kappa x + \lambda y = 0$. $|\langle \mathbf{x}, \mathbf{y} \rangle| = ||\mathbf{x}|| \cdot ||\mathbf{y}||.$ (2)

Proof of Statement (b).

Let x, y be vectors in the real *n*-dimensional space.

 \bullet ['(1) \Rightarrow (2)'?]

Suppose there exist some real numbers κ , λ , not both zero, such that $\kappa \mathbf{x} + \lambda \mathbf{y} = \mathbf{0}$. \lceil We want to deduce $|\langle x,y\rangle| = ||x|| \cdot ||y||$. Without loss of senerality, suppose $\lambda + 0$.

$$
|\text{Im } y = -\frac{R}{\lambda} \times . \text{ Therefore}
$$

$$
\langle x, y \rangle = |\langle x, -\frac{R}{\lambda} x \rangle| = |- \frac{R}{\lambda} \langle x, x \rangle| = |- \frac{R}{\lambda} | \cdot | \langle x, x \rangle|
$$

$$
= | - \frac{R}{\lambda} | \cdot ||x||^2
$$

$$
= ||x|| \cdot (|- \frac{R}{\lambda} | \cdot ||x||) = ||x|| \cdot || - \frac{R}{\lambda} \times || = ||x|| \cdot ||y||.
$$

Statement (b).

Let x , y be non-zero vectors in the real *n*-dimensional space. The following statements are logically equivalent:

(1) There exist some real numbers κ, λ , not both zero, such that $\kappa x + \lambda y = 0$. $|\langle \mathbf{x}, \mathbf{y} \rangle| = \|\mathbf{x}\| \cdot \|\mathbf{y}\|.$ (2)

Proof of Statement (b).

Let x, y be vectors in the real *n*-dimensional space.

\n- \n
$$
[f(1) \Rightarrow (2)^\circ]
$$
 ...\n $[f(2) \Rightarrow (1)^\circ]$ \n Suppose $|x, y\rangle = ||x|| \cdot ||y||$. Then $\langle x, y \rangle = ||x|| \cdot ||y||$ or $\langle x, y \rangle = -||x|| \cdot ||y||$.\n $(\langle x, y \rangle) = \langle x, y \rangle = \langle x, y \rangle = ||x|| \cdot ||y||$.\n $(\langle x, y \rangle) = \langle x, y \rangle = \langle x, y \rangle = \langle x, y \rangle = \langle x, y \rangle$.\n $(\langle x, y \rangle) = \langle x, y \rangle = \langle x, y \rangle$.\n $(\langle x, y \rangle) = \langle x, y \rangle = \langle x, y \rangle$.\n $(\langle x, y \rangle) = \langle x, y \rangle = \langle x, y \rangle$

4. Here are some other examples of such statements in school mathematics.

 (α) *Let* $\triangle ABC$ *be a triangle.*

 $\angle ACB$ is a right angle iff $AB^2 = AC^2 + BC^2$.

 (β) *Let* $\triangle ABC$ *be a triangle.*

∠*ACB is a right angle iff AB passes through the centre of the circumcircle of* $\triangle ABC$ *.*

 (γ) Let $f(z)$ be a polynomial with real/complex coefficients and indeterminate *z*, and *c be a real/complex number.*

The polynomial $z - c$ *is a factor of the polynomial* $f(z)$ *iff* $f(c) = 0$ *.*

- (*δ*) Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of complex numbers. The statements below *are logically equivalent:*
	- (1) ${a_n}_{n=0}^{\infty}$ *is an arithmetic progression. (There exists some complex number d such that for any* $n \in \mathbb{N}$ *,* $a_n = a_0 + nd$ *.*)

(2) For any
$$
n \in \mathbb{N}
$$
, $a_{n+1} = \frac{a_n + a_{n+2}}{2}$.

- 5. Many results in your *linear algebra* course are statements of this form. Here are some examples.
	- (α) *Let* $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n \in \mathbb{R}^m$. The statements below are logically equivalent:
		- (1) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are linearly dependent.
		- (2) One of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ is a linear combination of the others.
	- (β) Let A be an $(n \times n)$ -square matrix with real entries. The statements below are *logically equivalent:*
		- (1) *A is non-singular. (The zerovector is the only element of the null space of A.)*
		- (2) *A* is row-equivalent to the identity matrix I_n .
		- (3) *A is invertible.*
		- (4) For any $\mathbf{b} \in \mathbb{R}^n$, the system $A\mathbf{x} = \mathbf{b}$ has a unique solution.
		- (5) The columns of A constitute a basis for \mathbb{R}^n .

 $(6) det(A) \neq 0.$

Watch out how these results are proved in your *linear algebra* course.