1. Consider the pair of statements (1), (1) of the form below:

(1) ‘Let/suppose blih-blih-blih. Suppose blah-blah-blah. Then bleh-bleh-bleh.’
(1) ‘Let/suppose blih-blih-blih. Suppose bleh-bleh-bleh. Then blah-blah-blah.’

When want to state that both of (1), (1) are to hold simultaneously, we may combine
them into one statement of the form

e ‘Let/suppose blih-blih-blih. blah-blah-blah iff bleh-bleh-bleh.’

When one or both of ‘blah-blah-blah’, ‘bleh-bleh-bleh’ is very lengthy, we may
write in this way:

e ‘Let/suppose blih-blih-blih. The following statements are logically equiva-
lent:

(1) Blah-blah-blah.
(2) Bleh-bleh-bleh.’

The safest way for proving such a statement is to return to its original meaning:
prove (1), (1) separately.



. Statement (a).

T+ .
Z xy iff T =y.

Suppose x,y are positive real numbers. Then

Proof of Statement (a).
Suppose z,y are positive real numbers. (Then v/, /Y, \/TY, /T — /Y are well-

defined as real numbers.)
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3. Statement (b).

Let x, y be non-zero vectors in the real n-dimensional space. The following

statements are logically equivalent:

(1) There exist some real numbers k, A, not both zero, such that kx + Ay = 0.
2 Kyl = 1l -llyll-

Proof of Statement (b).

Let x, y be vectors in the real n-dimensional space.
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Statement (b).

Let x, y be non-zero vectors in the real n-dimensional space. The following

statements are logically equivalent:

(1) There exist some real numbers k, A, not both zero, such that kx + \y = 0.
2) [ =l 1yl

Proof of Statement (b).

Let x, y be vectors in the real n-dimensional space.
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o [(2)=(1)"7] whet dowe
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4. Here are some other examples of such statements in school mathematics.

() Let ANABC be a triangle.
/ACB is a right angle iff AB* = AC? + BC”.

(8) Let AABC be a triangle.

LACB is a right angle iff AB passes through the centre of the circumcircle of
NABC.

(7) Let f(z) be a polynomial with real/complex coefficients and indeterminate z, and
¢ be a real/complex number.

The polynomial z — ¢ is a factor of the polynomial f(z) iff f(c) = 0.

(0) Let {a,}>2, be an infinite sequence of complex numbers. The statements below
are logically equivalent:

(1) {a,}>2, is an arithmetic progression. (There exists some complex number d

such that for any n € N, a,, = ag + nd.)
Ap, + Apyo
S

(2) For any n € N, a1 =



5. Many results in your linear algebra course are statements of this form. Here are
some examples.

() Let uy,ug, - -+ ,u, € IR™. The statements below are logically equivalent:
(1) uy,uy, - - - ,u, are linearly dependent.
(2) One of u, us, - -+ , 1, is a linear combination of the others.

(B) Let A be an (n x n)-square matrix with real entries. The statements below are
logically equivalent:

(1) A is non-singular. (The zerovector is the only element of the null space of A.)

(2) A is row-equivalent to the identity matrix I,,.

(3) A is invertible.

(4) For any b € R, the system Ax = b has a unique solution.

(5)

(6)

The columns of A constitute a basis for IR".
6) det(A) # 0.

Watch out how these results are proved in your linear algebra course.



