1. Consider the pair of statements (\dagger) , (\ddagger) of the form below:

(†) 'Let/suppose blih-blih-blih. Suppose blah-blah-blah. Then bleh-bleh-bleh.'
(‡) 'Let/suppose blih-blih-blih. Suppose bleh-bleh-bleh. Then blah-blah-blah.'
When want to state that both of (†), (‡) are to hold simultaneously, we may combine them into one statement of the form

• 'Let/suppose blih-blih. blah-blah-blah iff bleh-bleh.'

When one or both of 'blah-blah', 'bleh-bleh' is very lengthy, we may write in this way:

- 'Let/suppose blih-blih. The following statements are logically equivalent:
 - (1) Blah-blah-blah.
- (2) Bleh-bleh-leh.'

The safest way for proving such a statement is to return to its original meaning: prove (\dagger) , (\ddagger) separately.

2. Statement (a).

Suppose x, y are positive real numbers. Then $\frac{x+y}{2} = \sqrt{xy}$ iff x = y.

Proof of Statement (a).

Suppose x, y are positive real numbers. (Then $\sqrt{x}, \sqrt{y}, \sqrt{xy}, \sqrt{x} - \sqrt{y}$ are well-defined as real numbers.)

• ['= -part'.] Suppose
$$x = y$$
. [We want to deduce $\frac{x+y}{2} = \sqrt{xy}$.]
Then $\frac{x+y}{2} = \frac{2x}{2} = x$.
Since x is positive, $\sqrt{x^2} = x$. Then $\sqrt{xy} = \sqrt{x^2} = x$.
Hence $\frac{x+y}{2} = x = \sqrt{xy}$.

• ['=>-part'.] Suppose
$$\frac{x+y}{2} = \sqrt{xy}$$
. [We want to deduce $x = y$.]
Since x, y are positive, we have $(Jx)^2 = x$ and $(Jy)^2 = y$ and $Jx \cdot Jy = [xy]$
Then $(Jx)^2 + (Ty)^2 = x+y = 2[xy] = 2Jx \cdot Jy$.
Therefore $(Jx - Jy)^2 = (Jx)^2 + (Jy)^2 - 2[x \cdot Jy] = 0$.
Hence $Jx - Jy = 0$.
Now we have $Jx = Jy$. Therefore $x = (Jx)^2 = (Jy)^2 = y$.

3. Statement (b).

Let \mathbf{x} , \mathbf{y} be non-zero vectors in the real *n*-dimensional space. The following statements are logically equivalent:

(1) There exist some real numbers κ, λ , not both zero, such that $\kappa \mathbf{x} + \lambda \mathbf{y} = \mathbf{0}$. (2) $|\langle \mathbf{x}, \mathbf{y} \rangle| = ||\mathbf{x}|| \cdot ||\mathbf{y}||$.

Proof of Statement (b).

Let \mathbf{x} , \mathbf{y} be vectors in the real *n*-dimensional space.

• $[(1) \Rightarrow (2)?]$

Suppose there exist some real numbers κ , λ , not both zero, such that $\kappa \mathbf{x} + \lambda \mathbf{y} = \mathbf{0}$. [We want to deduce $|\langle \mathbf{x}, \mathbf{y} \rangle| = ||\mathbf{x}|| \cdot ||\mathbf{y}||$.] Without loss of generality, Suppose $\lambda \neq 0$.

$$\begin{aligned} & \text{hen } Y = -\frac{1}{\lambda} \times . \quad (\text{herefore} \\ & \times, Y > \left| = \left| < \times, -\frac{K}{\lambda} \times \right| = \right| - \frac{K}{\lambda} \left| \cdot \left| < \times, \times > \right| \\ & = \left| -\frac{K}{\lambda} \right| \cdot \left| \left| \times \right| \right|^{2} \\ & = \left| -\frac{K}{\lambda} \right| \cdot \left| \left| \times \right| \right|^{2} \\ & = \left| \left| \times \left| \right| \cdot \left(\left| -\frac{K}{\lambda} \right| \cdot \left| \left| \times \right| \right| \right) \right| = \left| \left| \times \left| \right| - \frac{K}{\lambda} \times \left| \right| = \left| \left| \times \left| \right| \cdot \left| \left| \times \right| \right| \right| . \end{aligned}$$

Statement (b).

Let \mathbf{x} , \mathbf{y} be non-zero vectors in the real *n*-dimensional space. The following statements are logically equivalent:

(1) There exist some real numbers κ, λ , not both zero, such that $\kappa \mathbf{x} + \lambda \mathbf{y} = \mathbf{0}$. (2) $|\langle \mathbf{x}, \mathbf{y} \rangle| = ||\mathbf{x}|| \cdot ||\mathbf{y}||$.

Proof of Statement (b).

Let \mathbf{x} , \mathbf{y} be vectors in the real *n*-dimensional space.

•
$$[`(1) \Rightarrow (2)'?] \dots$$

• $[`(2) \Rightarrow (1)'?]$
Suppose $|\langle \mathbf{x}, \mathbf{y} \rangle| = ||\mathbf{x}|| \cdot ||\mathbf{y}||$. Then $\langle \mathbf{x}, \mathbf{y} \rangle = ||\mathbf{x}|| \cdot ||\mathbf{y}||$ or $\langle \mathbf{x}, \mathbf{y} \rangle = -||\mathbf{x}|| \cdot ||\mathbf{y}||$. [What dowe want to deduce?]
(Case 1). Suppose $\langle \mathbf{x}, \mathbf{y} \rangle = ||\mathbf{x}|| \cdot ||\mathbf{y}||$.
Define $K = ||\mathbf{y}||, \lambda = -||\mathbf{x}||$.
Since \mathbf{x}, \mathbf{y} are non-zero vectors, K, λ are non-zero real numbers.
Since \mathbf{x}, \mathbf{y} are non-zero vectors, K, λ are non-zero real numbers.
We have $||K\mathbf{x}+\lambda\mathbf{y}||^2 = \langle K\mathbf{x}+\lambda\mathbf{y}, K\mathbf{x}+\lambda\mathbf{y} \rangle$
 $= K^2 \langle \mathbf{x}, \mathbf{x} \rangle + K\lambda \langle \mathbf{x}, \mathbf{y} \rangle + \lambda K \langle \mathbf{y}, \mathbf{x} \rangle + \lambda^2 \langle \mathbf{y}, \mathbf{y} \rangle = ... = 0$
Then $||K\mathbf{x}+\lambda\mathbf{y}|| = 0$. Therefore $K\mathbf{x} + \lambda\mathbf{y} = 0$.
(Case 2). Suppose $\langle \mathbf{x}, \mathbf{y} \rangle = -||\mathbf{x}|| \cdot ||\mathbf{y}||$. Then so-and-so. \leftarrow [Tow exercise.]

4. Here are some other examples of such statements in school mathematics.

(α) Let $\triangle ABC$ be a triangle.

 $\angle ACB$ is a right angle iff $AB^2 = AC^2 + BC^2$.

(β) Let $\triangle ABC$ be a triangle.

 $\angle ACB$ is a right angle iff AB passes through the centre of the circumcircle of $\triangle ABC$.

(γ) Let f(z) be a polynomial with real/complex coefficients and indeterminate z, and c be a real/complex number.

The polynomial z - c is a factor of the polynomial f(z) iff f(c) = 0.

- (δ) Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of complex numbers. The statements below are logically equivalent:
 - (1) $\{a_n\}_{n=0}^{\infty}$ is an arithmetic progression. (There exists some complex number d such that for any $n \in \mathbb{N}$, $a_n = a_0 + nd$.)

(2) For any
$$n \in \mathbb{N}$$
, $a_{n+1} = \frac{a_n + a_{n+2}}{2}$

- 5. Many results in your *linear algebra* course are statements of this form. Here are some examples.
 - (α) Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n \in \mathbb{R}^m$. The statements below are logically equivalent:
 - (1) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are linearly dependent.
 - (2) One of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ is a linear combination of the others.
 - (β) Let A be an $(n \times n)$ -square matrix with real entries. The statements below are logically equivalent:
 - (1) A is non-singular. (The zerovector is the only element of the null space of A.)
 - (2) A is row-equivalent to the identity matrix I_n .
 - (3) A is invertible.
 - (4) For any $\mathbf{b} \in \mathbb{R}^n$, the system $A\mathbf{x} = \mathbf{b}$ has a unique solution.
 - (5) The columns of A constitute a basis for \mathbb{R}^n .

 $(6) \det(A) \neq 0.$

Watch out how these results are proved in your *linear algebra* course.