
MATH1050 Simple inequalities justified using ‘direct proofs’

1. Here is a (probably not exhaustive) list of properties of the real number system which (together with some others not
mentioned in the list) we have been tacitly assuming since school-days.

(a) The sum, the difference, and the product of any two (not necessarily distinct) real numbers are real numbers. The
quotient of any real number by any non-zero real number is a real number is a real number. (These ‘operations’
obey certain ‘laws of arithmetic’ which we have learnt and accepted since schooldays.)

(b) The sum and the product of any two (not necessarily distinct) positive real numbers are positive real numbers.
If the product of two real numbers is positive, then the two real numbers are both positive or both negative.
If the product of two real numbers is negative, then one of them is positive and the other is negative. The
square of any non-zero real number is positive. The quotient of any one positive real number by another (not
necessarily distinct) positive real number is a positive real number. Moreover, every real number is either positive
or negative or zero.

(c) For each positive real number x, for each integer n ≥ 2, there exists some positive real number r such that
x = rn. We denote this r by n

√
x and call it the n-th real root of x.

With the help of these ‘rules’ above, we are going to prove the inequalities below. But we will (be made to) look into
these ‘rules’ and formulate them more carefully in order to study them (when we are doing an analysis course.)

2. Statement (A1).

Let x, y be positive real numbers. Suppose x2 > y2. Then x > y.

Proof of Statement (A1).

Let x, y be positive real numbers. Suppose x2 > y2.
Then x2 − y2 > 0.
Note that x2 − y2 = (x− y)(x+ y).
Then (x− y)(x+ y) > 0.
Therefore (x− y > 0 and x+ y > 0) or (x− y < 0 and x+ y < 0).
Since x > 0 and y > 0, we have x+ y > 0.
Then x− y > 0 and x+ y > 0.
In particular x− y > 0.
Therefore x > y.

Very formal proof of Statement (A1).

I. Let x, y be positive real numbers. [Assumption.]
II. Suppose x2 > y2. [Assumption.]
III. x2 − y2 > 0. [II.]
IV. x2 − y2 = (x− y)(x+ y). [Properties of the reals.]
V. (x− y)(x+ y) > 0. [III, IV.]
VI (x− y > 0 and x+ y > 0) or (x− y < 0 and x+ y < 0). [V, properties of the reals.]
VII. x+ y > 0 [I.]
VIII. x− y > 0. [VI, VII.]
IX. x > y. [VIII.]

3. Statement (A2).

Let x, y be positive real numbers. Suppose x2 ≥ y2. Then x ≥ y.

Proof of Statement (A2).

Let x, y be positive real numbers. Suppose x2 ≥ y2.
Then x2 − y2 ≥ 0.
Note that x2 − y2 = (x− y)(x+ y).
Then (x− y)(x+ y) ≥ 0.

Since x > 0 and y > 0, we have x+ y > 0. Therefore 1

x+ y
> 0 also.

Then x− y = [(x− y)(x+ y)] · 1

x+ y
≥ 0.

Therefore x ≥ y.

4. Statement (B).
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Suppose x, y are positive real numbers. Then x+ y

2
≥ √

xy.

Proof of Statement (B).

Suppose x, y are positive real numbers.
Then

√
x,

√
y are well-defined as real numbers.

Therefore
√
x−√

y is well-defined as a real number.
Since x, y are positive, xy is positive. Then √

xy is well defined and
√
x
√
y =

√
xy.

Since x, y are positive, we have (
√
x)2 = x and (

√
y)2 = y.

Therefore x+ y − 2
√
xy = (

√
x)2 − 2

√
x
√
y + (

√
y)2 = (

√
x−√

y)2 ≥ 0.

Hence x+ y

2
≥ √

xy.

Very formal proof of Statement (B).

I. Suppose x, y are positive real numbers. [Assumption.]
II.

√
x,

√
y are well-defined as real numbers. [I.]

III.
√
x−√

y is well-defined as a real number. [II.]
IV. xy is a positive real number. [I, properties of the reals.]
V. √xy is well-defined as a real number. [IV.]
VI.

√
x
√
y =

√
xy. [II, V, properties of the reals.]

VII. (
√
x)2 = x. [I, II.]

VIII. (√y)2 = y. [I, II.]
IX. (

√
x−√

y)2 = x− 2
√
xy + y. [VI, VII, VIII.]

X.(
√
x−√

y)2 ≥ 0. [III, properties of the reals.]
XI. x− 2

√
xy + y ≥ 0. [IX, X.]

XII. x+ y

2
≥ √

xy. [XI.]

5. Statement (C).

Let x, y ∈ R. Suppose x ̸= 0 or y ̸= 0. Then x2 + xy + y2 > 0.

Proof of Statement (C).

Let x, y ∈ R. Suppose x ̸= 0 or y ̸= 0.

(Case 1). Suppose x ̸= 0. Then x2 + xy + y2 =
3x2

4
+

(x
2
+ y

)2

> 0 + 0 = 0.

(Case 2). Suppose y ̸= 0. Then x2 + xy + y2 =
3y2

4
+

(y
2
+ x

)2

> 0.

Hence, in any case, x2 + xy + y2 > 0.

Very formal proof of Statement (C).

I. Let x, y ∈ R. [Assumption.]
II. Suppose x ̸= 0 or y ̸= 0. [Assumption.]
III.

IIIi. Suppose x ̸= 0. [One of the possibilities in II.]

IIIii. x2 + xy + y2 =
3x2

4
+
(x
2
+ y

)2

. [Properties the reals.]

IIIiii. 3x2

4
> 0. [Properties of the reals.]

IIIiv.
(x
2
+ y

)2

≥ 0. [Properties of the reals.]

IIIv. x2 + xy + y2 > 0. [IIIii, IIIiii, IIIiv, properties the reals.]
IV.

IVi. Suppose y ̸= 0. [One of the possibilities in II.]

IVii. x2 + xy + y2 =
3y2

4
+
(y
2
+ x

)2

. [Properties of the reals.]

IViii. 3y2

4
> 0. [Properties of the reals.]
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IViv.
(y
2
+ x

)2

≥ 0. [Properties of the reals.]

IVv. x2 + xy + y2 > 0. [IVii, IViii, IViv, properties of the reals.]
V. x2 + xy + y2 > 0. [II, III, IV.]

6. Statement (A’).

Let x, y be non-negative real numbers. Suppose x2 ≥ y2. Then x ≥ y.

Proof of Statement (A’).

Let x, y be non-negative real numbers. Suppose x2 ≥ y2.
Then x2 − y2 ≥ 0.
Note that x2 − y2 = (x− y)(x+ y).
Then (x− y)(x+ y) ≥ 0.
Since x ≥ 0 and y ≥ 0, we have x+ y ≥ 0.
Then x+ y > 0 or x+ y = 0.

(Case 1). Suppose x+ y > 0. Since (x− y)(x+ y) ≥ 0, we have x− y ≥ 0. Therefore x ≥ y.
(Case 2). Suppose x+ y = 0. Since x ≥ 0 and y ≥ 0, we have x = y = 0. Therefore x ≥ y.

Hence, in any case, x ≥ y.

Very formal proof of Statement (A’).

I. Let x, y be non-negative real numbers. [Assumption.]
II. Suppose x2 ≥ y2. [Assumption.]
III. x2 − y2 ≥ 0. [II.]
IV. x2 − y2 = (x− y)(x+ y). [Properties of the reals.]
V. (x− y)(x+ y) ≥ 0. [III, IV.]
VI (x− y ≥ 0 and x+ y ≥ 0) or (x− y ≤ 0 and x+ y ≤ 0). [V, properties of the reals.]
VII. x+ y ≥ 0. [I.]
VIII. x+ y > 0 or x+ y = 0. [VII.]
IX.

IXi. Suppose x+ y > 0. [One of the possibilities in VIII.]
IXii. x− y ≥ 0. [VI, IXi.]
IXiii. x ≥ y. [IXii.]

X.
Xi. Suppose x+ y = 0. [One of the possibilities in VIII.]
Xii. x = y = 0. [I, Xi.]
Xiii. x ≥ y. [Xii.]

XI. x ≥ y. [VIII, IX, X.]

7. Statement (D). (Bernoulli’s Inequality.)

Let m ∈ N\{0, 1} and β ∈ R. Suppose β > 0 or −1 < β < 0. Then (1 + β)m > 1 +mβ.

Proof of Statement (D).

Let m ∈ N\{0, 1} and β ∈ R. Suppose β > 0 or −1 < β < 0. Note that

(1 + β)m − 1 = (1 + β)m − 1m = [(1 + β)− 1][(1 + β)m−1 + (1 + β)m−2 + · · ·+ 1]

= β[(1 + β)m−1 + (1 + β)m−2 + · · ·+ (1 + β) + 1]

(Case 1). Suppose β > 0. Then, since β > 0 and 1 + β > 1, we have

(1 + β)m − 1 = β[(1 + β)m−1 + (1 + β)m−2 + · · ·+ (1 + β) + 1]

> β (1 + 1 + · · ·+ 1 + 1)︸ ︷︷ ︸
m copies

= mβ

(Case 2). Suppose −1 < β < 0. Then, since −β > 0 and 0 < 1 + β < 1, we have

1− (1 + β)m = −[(1 + β)m − 1] = (−β)[(1 + β)m−1 + (1 + β)m−2 + · · ·+ (1 + β) + 1]

< (−β) (1 + 1 + · · ·+ 1 + 1)︸ ︷︷ ︸
m copies

= −mβ
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Therefore, in any cases, (1 + β)m > 1 +mβ.

Remark. Below is a more general version of Bernoulli’s Inequality:

Let µ be a rational number, and β be a real number. Suppose µ ̸= 0 and µ ̸= 1, and β > −1. The statements
below hold:
(1) Suppose µ < 0 or µ > 1. Then (1 + β)µ ≥ 1 + µβ.
(2) Suppose 0 < µ < 1. Then (1 + β)µ ≤ 1 + µβ.
(3) In each of (1), (2), equality holds iff β = 0.

8. Carefully examining the proofs of the inequalities above, we probably have to concede that we need expand the list
of ‘rules as regards inequalities’ which we are tacitly assuming since school-days. To be more efficient, we state them
with the help of symbols.

(1) Let x, y ∈ R. y − x > 0 iff x < y.
(1∗) Let x, y ∈ R. y − x ≥ 0 iff x ≤ y.
(2) Let x, y, z ∈ R. If x < y and y < z then x < z.
(2∗) Let x, y, z ∈ R. The statements below hold:

(2∗a) x ≤ x.
(2∗b) If (x ≤ y and y ≤ x) then x = y.
(2∗c) If (x ≤ y and y ≤ z) then x ≤ z.

(3) Let x ∈ R. Exactly one of ‘x < 0’, ‘x = 0’, ‘x > 0’ is true.
(4) Let x, y ∈ R. Suppose x < y. Then the statements below hold:

(4a) For any u ∈ R, x+ u < y + u and x− u < y − u.
(4b) For any u ∈ R, if u > 0 then xu < yu and x/u < y/u.
(4c) For any u ∈ R, if u < 0 then xu > yu and x/u > y/u.

(4∗) Let x, y ∈ R. Suppose x ≤ y. Then the statements below hold:
(4∗a) For any u ∈ R, x+ u ≤ y + u and x− u ≤ y − u.
(4∗b) For any u ∈ R, if u > 0 then xu ≤ yu and x/u ≤ y/u.
(4∗c) For any u ∈ R, if u < 0 then xu ≥ yu and x/u ≥ y/u.

(5) Let x, y, u, v ∈ R. Suppose x < y and u < v. The statements below hold:
(5a) x+ u < y + v.
(5b) Further suppose x > 0, y > 0, u > 0 and v > 0. Then xu < yv.

(5∗) Let x, y, u, v ∈ R. Suppose x ≤ y and u ≤ v.
(5∗a) x+ u ≤ y + v.
(5∗b) Further suppose x ≥ 0, y ≥ 0, u ≥ 0 and v ≥ 0. Then xu ≤ yv.

(6) Let x, y ∈ R. The statements below hold:
(6a) Suppose xy > 0. Then (x > 0 and y > 0) or (x < 0 and y < 0).
(6b) Suppose xy < 0. Then (x > 0 and y < 0) or (x < 0 and y > 0).

(6∗) Let x, y ∈ R. The statements below hold:
(6∗a) Suppose xy ≥ 0. Then (x ≥ 0 and y ≥ 0) or (x ≤ 0 and y ≤ 0).
(6∗b) Suppose xy ≤ 0. Then (x ≥ 0 and y ≤ 0) or (x ≤ 0 and y ≥ 0).

(7) Let x ∈ R. Suppose x ̸= 0. Then x2 > 0.
(7∗) Let x ∈ R. x2 ≥ 0.

We do not claim that this list is exhaustive in any sense. Nor do we claim that each item in the list is as ‘basic’ as
each other. In fact, some of them are regarded to be more ‘basic’ in your analysis course and used in deducing others.
But more fundamentally, we have side-stepped the question what we mean by the terms/phrases ‘less than’, ‘positive’.
Such questions will be resolved in your analysis course.
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