1. Tacitly assumed properties of the real number system since school-days:

(a) i. Let $x, y \in \mathbb{R}$. $x + y \in \mathbb{R}$ and $x - y \in \mathbb{R}$ and $xy \in \mathbb{R}$.

ii. Let $x, y \in \mathbb{R}$. Suppose $y \neq 0$. Then $x/y \in \mathbb{R}$.

- (b) i. Let x ∈ ℝ. Exactly one of 'x < 0', 'x = 0', 'x > 0' is true.
 ii. Let x, y ∈ ℝ. Suppose x > 0 and y > 0. Then x + y > 0 and xy > 0 and x/y > 0.
 - iii. Let $x, y \in \mathbb{R}$. Suppose xy > 0. Then (x > 0 and y > 0) or (x < 0 and y < 0).
- (c) For each positive real number x, for each integer n ≥ 2, there exists some positive real number r such that x = rⁿ.
 We denote this r by ⁿ√x and call it the n-th real root of x.

2. Statement (A1).

Let x, y be positive real numbers. Suppose $x^2 > y^2$. Then x > y. Ask: Assumptions it the statement? Proof of Statement (A1). Conclusions Write Let x, y be positive real numbers. what do we want to deduce? down the Suppore X'>Y' Roughwork. Answer: assumptions. Then x - y > 0. Ask: Any equivalent formulation Note that x2- y2 = (x-y)(x+y). which may be easier to manipulate Then (x-y)(x+y) > 0and which may seem to link with the assumptions! Therefore Don't ponic: Answer: X-Y → (x-y>0 and x+y>0) or (x-y<0 and x+y<0) which part We observe : of the U We can turn the assumption Since x>0 and y>0, assumption) is yet we have X+y>0. to be used? Then X-y>0 and X+y>0. $x^{2}-y^{2} = (x-y)(x+y)$ In particular x-y>0 ??? positive??? positive by Therefore X>Y.

Statement (A1).

Let x, y be positive real numbers. Suppose $x^2 > y^2$. Then x > y. Very formal proof of Statement (A1).

I. Let x, y be positive real numbers. [Assumption.] II. Suppose $x^2 > y^2$. [Assumption.] III. $x^2 - y^2 > 0$. [II.] IV. $x^2 - y^2 = (x - y)(x + y)$. [Properties of the reals.] V. (x - y)(x + y) > 0. [III, IV.] VI (x - y > 0 and x + y > 0) or (x - y < 0 and x + y < 0). [V, properties of the reals.] VII. x + y > 0 [I.] VIII. x - y > 0. [VI, VII.]

IX. x > y. [VIII.]

3. Statement (A2).

Let x, y be positive real numbers. Suppose $x^2 \ge y^2$. Then $x \ge y$. **Proof of Statement (A2)**.

Let x, y be positive real numbers. Suppose $x^2 \ge y^2$. Then $x^2 - y^2 \ge 0$. Note that $x^2 - y^2 = (x - y)(x + y)$. Then $(x - y)(x + y) \ge 0$. Since x > 0 and y > 0, we have x + y > 0. Therefore $\frac{1}{x + y} > 0$ also. Then $x - y = [(x - y)(x + y)] \cdot \frac{1}{x + y} \ge 0$. Therefore $x \ge y$.

4. Statement (B).

Suppose x, y are positive real numbers. Then $\frac{x+y}{2} \ge \sqrt{xy}$. Proof of Statement (B). [Assumptions? Conclusion?] [tesungtion] & Suppose x, y one positive real numbers. Ask: How to reach x+y > 1xy? Here to Then Jx, Jy are well-defined as real numbers. Af Clueless? So ask: Is there some equivalent formulation of Also, Jx - Jy is well-defined as a real number. Sure $\frac{x+y}{2} \ge \sqrt{xy}$ that which is more suggestive, everything & Since x, y are positive, xy is also positive. linking what we know or have learnt? · Moresver, Jxy is well-defined as a real number, Or is there some consequence of calculation "x+y = Txy " which is more suggestive? and Jxy = Jx . Jy . below makes Since x, y are positive, $x=(Tx)^2$ and $y=(Ty)^2$ Ask: Assuming 27 > Juy holds, what happens ? Therefore Answer. X+4 > Jxy. $x+y-2\sqrt{xy} = (\sqrt{x})^2 + (\sqrt{y})^2 - 2\sqrt{x} \cdot \sqrt{y}$ Then x-2 Jxy + y > 0. (Allowed?) $\rightarrow (J\overline{x})^2 - 2J\overline{x} \cdot J\overline{y} + (J\overline{y})^2 \ge 0.$ $=(\overline{J_{X}}-\overline{J_{Y}})^{-}$ (Jx - Iy)² ≥ 0. - Suggestive? Hence X+Y > JXY Now ask: Can this process be 'revensed'? П

Statement (B).

Suppose x, y are positive real numbers. Then $\frac{x+y}{2} \ge \sqrt{xy}$.

Very formal proof of Statement (B).

I. Suppose x, y are positive real numbers. [Assumption.] II. \sqrt{x}, \sqrt{y} are well-defined as real numbers. [I.] **III**. $\sqrt{x} - \sqrt{y}$ is well-defined as a real number. **[II**.] IV. xy is a positive real number. [I, properties of the reals.] V. \sqrt{xy} is well-defined as a real number. [IV.] **VI**. $\sqrt{x}\sqrt{y} = \sqrt{xy}$. **[II**, **V**, properties of the reals.] **VII.** $(\sqrt{x})^2 = x$. **[I, II.] VIII**. $(\sqrt{y})^2 = y$. **[I, II**.] IX. $(\sqrt{x} - \sqrt{y})^2 = x - 2\sqrt{xy} + y$. [VI, VII, VIII.] $\mathbf{X}.(\sqrt{x}-\sqrt{y})^2 \ge 0.$ [III, properties of the reals.] **XI**. $x - 2\sqrt{xy} + y \ge 0$. [**IX**, **X**.] **XII**. $\frac{x+y}{2} \ge \sqrt{xy}$. [**XI**.]

5. Statement (C).

Let $x, y \in \mathbb{R}$. Suppose $x \neq 0$ or $y \neq 0$. Then $x^2 + xy + y^2 > 0$. **Proof of Statement (C)**. Let x, y ∈ R. Suppose x ≠ 0 m y ≠ 0. Ask: How to reach x2+xy+y2>0 from 'x = 2' ? (Care 1). Suppose X = 0. ~ Answer: Observe that Then $x^2 + xy + y^2 = \frac{3x^2}{4} + (\frac{x}{2} + y)^2 \neq 0$ X + Xy + Yis a quadratic expression. This suggests something we have leavent: Completing the square. (Case 2). Suppose y to. Ask: In the equality below possible? Then $x^{2} + xy + y^{2} = \frac{3y^{2}}{4} + (\frac{y}{2} + x)^{2}$ $x^{2}+xy+y^{2} = \# \cdot x^{2} + \#_{2} \cdot (\dots)^{2}$ non-negative numbers? absorbing everything involving y? Answer: Yes: Hence, in any case, x2+xy+y2>0. $\chi^{2} + \chi y + y^{2} = \frac{3}{4} \chi^{2} + 1 \cdot (\frac{\chi}{2} + y)^{2}$ And this is positive because x = 0. Smart argument. Remoder: What if x=0? Note that $x^2 + xy + y^2 = \frac{1}{2}x^2 + \frac{1}{2}y^2 + \frac{1}{2}(x+y)^2$. So ???

6. Statement (A').

Let x, y be non-negative real numbers. Suppose $x^2 \ge y^2$. Then $x \ge y$. **Proof of Statement (A')**.

Let x, y be non-negeritive real numbers.
Suppose
$$\chi^2 \ge y^2$$
.
Then $\chi^2 - y^2 \ge 0$.
Note that $\chi^2 - y^2 \ge 0$.
Note that $\chi^2 - y^2 = (x - y)(x + y)$.
Then $(x - y)(x + y) \ge 0$.
Therefore
 $\chi(x - y \ge 0 \text{ and } x + y \ge 0)$ or $(x - y \le 0 \text{ and } x + y \le 0)$.
So we reduce
 $\chi(x - y \ge 0 \text{ and } x + y \ge 0)$ or $(x - y \le 0 \text{ and } x + y \le 0)$.
But there is a problem.
Since $\chi \ge 0$ and $y \ge 0$, we have $\chi + y \ge 0$.
(Case 1). Suppose $\chi + y \ge 0$.
Since $(x - y)(x + y) \ge 0$, we have $x - y \ge 0$. Then $\chi \ge y$.
(Case 2). Suppose $\chi + y \ge 0$.
Therefore, in any case, we have $\chi \ge y$.

Very formal proof of Statement (A').

I. Let x, y be non-negative real numbers. [Assumption.]

II. Suppose $x^2 \ge y^2$. [Assumption.]

III. $x^2 - y^2 \ge 0$. [**II**.]

IV. $x^2 - y^2 = (x - y)(x + y)$. [Properties of the reals.]

V. $(x - y)(x + y) \ge 0$. [III, IV.] VI $(x - y \ge 0$ and $x + y \ge 0$) or $(x - y \le 0$ and $x + y \le 0$). [V, properties of the reals.]

VII. $x + y \ge 0$. [**I**.]

VIII. x + y > 0 or x + y = 0. [**VII**.] **IX**.

IXi. Suppose x + y > 0. [One of the possibilities in VIII.] IXii. $x - y \ge 0$. [VI, IXi.] IXiii. $x \ge y$. [IXii.]

\mathbf{X} .

Xi. Suppose x + y = 0. [One of the possibilities in VIII.] Xii. x = y = 0. [I, Xi.] Xiii. $x \ge y$. [Xii.] XI. $x \ge y$. [VIII, IX, X.] 7. Statement (D). (Bernoulli's Inequality.)

Let $m \in \mathbb{N} \setminus \{0,1\}$ and $\beta \in \mathbb{R}$. Suppose $\beta > 0$ or $-1 < \beta < 0$. Then $(1+\beta)^m > 1 + m\beta.$ Roughwork Proof of Statement (D). Ask: How to arrive at '(1+p)">1+mp'? Lot MEN 20,15 and BER. Any equivalent formulation which links up with what we leavent? Suppose B>0 (0) - 1 < B<0. [Want to deduce : (1+B)"> 1+mB] Answer: $(1+\beta)^m - 1 > m\beta'$. Recall from school maths: Note that (1+ p) -1 = (1+ p) -1 $S'-t' = (S-t)(s^{n-1}+s^{n-2}t+s^{n-3}t^2+...$ $= \left[\left((+\beta) - 1 \right) \right] \left[\left(1 + \beta \right)^{m-1} + \left(1 + \beta \right)^{m-2} + \dots + \left(1 + \beta \right) + 1 \right]$ $+ S^{2}t^{n-3} + St^{n-2} + t^{n-1}$ - So? $= \beta \cdot \left[(1+\beta)^{m-1} + (1+\beta)^{m-2} + ... + (1+\beta) + 1 \right]$ Suppose B>0. Then, Since B>0 and I+B>1, A (Case I). $(1+\beta)^{m-1} = \beta \cdot [(1+\beta)^{m-1} + (1+\beta)^{m-2} + ... + (1+\beta) + 1] > \beta \cdot (1+1+...+1+1) = m\beta$. m terms(Case 2). Suppose -1<B<0. Then, since -B>O and O<1+B<1, $1 - (1+\beta)^{m} = (-\beta) \cdot \left[(1+\beta)^{m-1} + (1+\beta)^{m-2} + \dots + (1+\beta) + 1 \right] < (-\beta) \cdot (1+1+\dots+1+1) = -m\beta.$ Therefore, in any case, $(1+\beta)^m > 1+m\beta$.

Remark. Below is a more general version of **Bernoulli's Inequality**:

Let μ be a rational number, and β be a real number. Suppose $\mu \neq 0$ and $\mu \neq 1$, and $\beta > -1$. The statements below hold:

- (1) Suppose $\mu < 0$ or $\mu > 1$. Then $(1 + \beta)^{\mu} \ge 1 + \mu\beta$.
- (2) Suppose $0 < \mu < 1$. Then $(1 + \beta)^{\mu} \le 1 + \mu\beta$.
- (3) In each of (1), (2), equality holds iff $\beta = 0$.

- 8. We need expand the list of 'rules as regards inequalities' which we are tacitly assuming since school-days!
 - (1) Let $x, y \in \mathbb{R}$. y x > 0 iff x < y.
 - (1*) Let $x, y \in \mathbb{R}$. $y x \ge 0$ iff $x \le y$.
 - (2) Let $x, y, z \in \mathbb{R}$. If x < y and y < z then x < z.
 - (2^*) Let $x, y, z \in \mathbb{R}$. The statements below hold:

 $(2^*a) \ x \le x.$

- (2*b) If $(x \leq y \text{ and } y \leq x)$ then x = y.
- (2^{*}c) If $(x \leq y \text{ and } y \leq z)$ then $x \leq z$.
- (3) Let $x \in \mathbb{R}$. Exactly one of 'x < 0', 'x = 0', 'x > 0' is true.
- (4) Let $x, y \in \mathbb{R}$. Suppose x < y. Then the statements below hold:
 - (4a) For any $u \in \mathbb{R}$, x + u < y + u and x u < y u.
 - (4b) For any $u \in \mathbb{R}$, if u > 0 then xu < yu and x/u < y/u.
 - (4c) For any $u \in \mathbb{R}$, if u < 0 then xu > yu and x/u > y/u.

(4*) Let $x, y \in \mathbb{R}$. Suppose $x \leq y$. Then the statements below hold: (4*a) For any $u \in \mathbb{R}$, $x + u \leq y + u$ and $x - u \leq y - u$. (4*b) For any $u \in \mathbb{R}$, if u > 0 then $xu \leq yu$ and $x/u \leq y/u$. (4*c) For any $u \in \mathbb{R}$, if u < 0 then $xu \geq yu$ and $x/u \geq y/u$ More rules:

- (5) Let $x, y, u, v \in \mathbb{R}$. Suppose x < y and u < v. The statements below hold: (5a) x + u < y + v.
- (5b) Further suppose x > 0, y > 0, u > 0 and v > 0. Then xu < yv.

(5^{*}) Let
$$x, y, u, v \in \mathbb{R}$$
. Suppose $x \leq y$ and $u \leq v$.

 $(5^*a) \ x + u \le y + v.$

- (5*b) Further suppose $x \ge 0$, $y \ge 0$, $u \ge 0$ and $v \ge 0$. Then $xu \le yv$.
- (6) Let $x, y \in \mathbb{R}$. The statements below hold:

(6a) Suppose xy > 0. Then (x > 0 and y > 0) or (x < 0 and y < 0).

(6b) Suppose xy < 0. Then (x > 0 and y < 0) or (x < 0 and y > 0).

(6*) Let $x, y \in \mathbb{R}$. The statements below hold:

- (6*a) Suppose $xy \ge 0$. Then $(x \ge 0 \text{ and } y \ge 0)$ or $(x \le 0 \text{ and } y \le 0)$.
- (6*b) Suppose $xy \leq 0$. Then $(x \geq 0 \text{ and } y \leq 0)$ or $(x \leq 0 \text{ and } y \geq 0)$.
- (7) Let $x \in \mathbb{R}$. Suppose $x \neq 0$. Then $x^2 > 0$.

(7*) Let
$$x \in \mathbb{R}$$
. $x^2 \ge 0$.