1. Tacitly assumed properties of the real number system since school-days:

(a) i. Let $x, y \in \mathbb{R}$. $x + y \in \mathbb{R}$ and $x - y \in \mathbb{R}$ and $xy \in \mathbb{R}$.

ii. Let $x, y \in \mathbb{R}$. Suppose $y \neq 0$. Then $x/y \in \mathbb{R}$.

- (b) i. Let $x \in \mathbb{R}$. Exactly one of ' $x < 0$ ', ' $x = 0$ ', ' $x > 0$ ' is true. ii. Let $x, y \in \mathbb{R}$. Suppose $x > 0$ and $y > 0$. Then $x + y > 0$ and $xy > 0$ and $x/y > 0.$
	- iii. Let $x, y \in \mathbb{R}$. Suppose $xy > 0$. Then $(x > 0 \text{ and } y > 0)$ or $(x < 0 \text{ and } y > 0)$ $y<0$).
- (c) For each positive real number x, for each integer $n \geq 2$, there exists some positive real number r such that $x = r^n$. We denote this r by $\sqrt[n]{x}$ and call it the n-th real root of x.

2. Statement $(A1)$.

Let x, y be positive real numbers. Suppose $x^2 > y^2$. Then $x > y$. Ask: Assumptions in the statement? Proof of Statement (A1). Conclusions Write Let x, y be positive real numbers. what do we want to deduce? down $+he$ Suppose x > y Roughwork. Answer: assumptions. Then $x^2 - y^2 > 0$. Ask: Any equivalent formulation Note that $x^2 - y^2 = (x - y)(x + y)$. which may be easier to manipulate Then $(x-y)(x+y) > 0$ and which may seem to link with the assumptions! Therefore Don't paris! Answer: $X - 4$ \Rightarrow $(x-y>0 \text{ and } x+y>0)$ or $(x-y<0 \text{ and } x+y<0)$ which part We observe: of the (1) We can turn the assumption $Sine \rightharpoonup x > 0$ and $y > 0$, assumptions is yet we have $x+y>0$. to be used? Then $x-y>0$ and $x+y>0$. $x^2-y^2 = (x-y)(x+y)$ In particular x-y>0 ??? positive ??? positive by Therefore X>y. ם

Statement (A1).

Let x, y be positive real numbers. Suppose $x^2 > y^2$. Then $x > y$. Very formal proof of Statement (A1).

I. Let x, y be positive real numbers. [Assumption.] **II**. Suppose $x^2 > y^2$. [Assumption.] **III.** $x^2 - y^2 > 0$. **II.** IV. $x^2 - y^2 = (x - y)(x + y)$. [Properties of the reals.] **V**. $(x - y)(x + y) > 0$. **IIII, IV**.] **VI** $(x - y > 0$ and $x + y > 0$ or $(x - y < 0$ and $x + y < 0$. [V, properties of the reals. **VII.** $x + y > 0$ [I.] VIII. $x - y > 0$. [VI, VII.]

IX. $x > y$. [VIII.]

3. Statement $(A2)$.

Let x, y be positive real numbers. Suppose $x^2 \ge y^2$. Then $x \ge y$. Proof of Statement (A2).

Let x, y be positive real numbers. Suppose $x^2 \ge y^2$. Then $x^2 - y^2 > 0$. Note that $x^2 - y^2 = (x - y)(x + y)$. Then $(x - y)(x + y) \geq 0$. Since $x > 0$ and $y > 0$, we have $x + y > 0$. Therefore $\frac{1}{x + y} > 0$ also. Then $x - y = [(x - y)(x + y)] \cdot \frac{1}{x + y} \ge 0.$ Therefore $x \geq y$.

4. Statement (B) .

Suppose x, y are positive real numbers. Then $\frac{x+y}{2} \geq \sqrt{xy}$. Proof of Statement (B). [Assumptions? Conclusion?] [tesumption] + Suppose x, y are positive real numbers. mumbs $f(x):$ How to reach $\frac{x+y}{2} \ge \sqrt{xy}$? Here Jo Then JX, Jy are well-defined as real numbers. 4) Clueless? So ask: Is there some equivalent formulation of + Also, $\overline{1}x - \overline{1}y$ is well-defined as a real number. Sure $\frac{x+y}{2} \ge \sqrt{xy}$ that which is more suggestive, everything to Since x, y are positive, xy is also positive. linking what we know or have learnt? to Monesver, Ixy is well-defined as a real number, Or is there some consequence of calculation *** = Iry "which is more suggestave? and $Jxy = Jx \cdot Jy$. below makes \int Sice x, y are positive, $x=(\sqrt{x})^2$ and $y=(\sqrt{y})^2$ $\frac{1}{2}$ Assuming $\frac{x+y}{2} \geq \sqrt{xy}$ holds, what happens? Therefore Answer. $\frac{x+y}{2} \geq \sqrt{xy}$. $x+y-2\sqrt{xy} = (\sqrt{x})^2 + (\sqrt{y})^2 - 2\sqrt{x} \cdot \sqrt{y}$ Then $x-2\sqrt{xy} + y \ge 0$. $($ Allowed?) \rightarrow $(\sqrt{x})^{2}$ - $2\sqrt{x}\cdot\sqrt{y}$ + $(\sqrt{y})^{2}$ \geq 0. $= (\sqrt{x} - \sqrt{y})^2$ $(Jx - 19)^2 \ge 0$. -Suggestive? Hence $\frac{x+y}{2} \ge \sqrt{x}y$ Now ask: Can this process be 'reversed'? п

Statement (B).

Suppose x, y are positive real numbers. Then $\frac{x+y}{2} \geq \sqrt{xy}$.

Very formal proof of Statement (B).

I. Suppose x, y are positive real numbers. [Assumption.] II. \sqrt{x}, \sqrt{y} are well-defined as real numbers. [I.] **III.** $\sqrt{x} - \sqrt{y}$ is well-defined as a real number. [II.] IV. xy is a positive real number. [I, properties of the reals.] **V**. \sqrt{xy} is well-defined as a real number. [IV.] **VI**. $\sqrt{x}\sqrt{y} = \sqrt{xy}$. [II, **V**, properties of the reals.] **VII.** $(\sqrt{x})^2 = x$. **II. II.** VIII. $(\sqrt{y})^2 = y$. [I, II.] IX. $(\sqrt{x} - \sqrt{y})^2 = x - 2\sqrt{xy} + y$. [VI, VII, VIII.] $\mathbf{X}.(\sqrt{x}-\sqrt{y})^2 \geq 0$. [III, properties of the reals.] **XI**. $x - 2\sqrt{xy} + y \ge 0$. **IX**, **X**. **XII**. $\frac{x+y}{2} \geq \sqrt{xy}$. **[XI**.]

 $5.$ Statement $(C).$

Let $x, y \in \mathbb{R}$. Suppose $x \neq 0$ or $y \neq 0$. Then $x^2 + xy + y^2 > 0$. Proof of Statement (C). Let x, y ER. Suppose $x \neq 0$ (or) y $\neq 0$. Ask: How to reach $x^2 + xy + y^2 > 0$ from $x \ne 0$, ? (Case 1). Suppose X #0. Answer: Observe that Then $x^2+xy+y^2=\frac{3x^2}{4}+(\frac{x}{2}+y)^2$ + $X + Xy + y$ is a quadratic expression. This suggests something we have leavent: Completing the square. (Case 2). Suppose y to. Ask: In the equality below possible? Then $x^2 + xy + y^2 = \frac{3y^2}{4} + (\frac{y}{2} + x)^2$ $x^2+xy+y^2 = \frac{4}{11} \cdot x^2 + \frac{4}{112} \cdot ($) absorbing everything non-negative Answer: Yes: Hence, in any case, $x^2+xy+y^2>0$. $x^2+xy+y^2=\frac{3}{4}x^2+1\cdot(\frac{x}{2}+y)^2$ And this is positive because x #0. Smart argument. Remonder: What if x=0? Note that $x^2+xy+y^2=\frac{1}{2}x^2+\frac{1}{2}y^2+\frac{1}{2}(x+y)^2$. So ???

6. Statement (A^{\prime}) .

Let x, y be non-negative real numbers. Suppose $x^2 \ge y^2$. Then $x \ge y$. Proof of Statement (A').

Let
$$
x, y
$$
 be non-negative real numbers.

\n
$$
\begin{aligned}\n\text{Suppose } x^2 \ge y^2: \\
\text{The } x^2 - y^2 \ge 0. \\
\text{The } x^2 - y^2 \ge 0. \\
\text{The } (x - y)(x + y) \ge 0. \\
\text{The } (x - y)(x + y) \ge 0. \\
\text{The } (x - y)(x + y) \ge 0.\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Substituting } x \\
\text{In the case 1} \\
\text{Substituting } x \\
\text{In the case 2} \\
\text{Substituting } x\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Substituting } x \\
\text{In the case 3} \\
\text{Substituting } x\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Substituting } x \\
\text{Substituting } x\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Substituting } x \\
\text{Substituting } x\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Substituting } x \\
\text{Substituting } x\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Substituting } x \\
\text{Substituting } x\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Substituting } x \\
\text{Substituting } x\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Substituting } x\n\end{aligned}
$$
\n
$$
\begin{
$$

Very formal proof of Statement (A^{\prime}) .

I. Let x, y be non-negative real numbers. [Assumption.]

II. Suppose $x^2 \geq y^2$. [Assumption.]

III. $x^2 - y^2 > 0$. **II.**

IV. $x^2 - y^2 = (x - y)(x + y)$. [Properties of the reals.

V. $(x - y)(x + y) \ge 0$. **III**, **IV**. **VI** $(x - y \ge 0$ and $x + y \ge 0$ or $(x - y \le 0 \text{ and } x + y \le 0).$ [V, properties of the reals.

VII. $x + y \ge 0$. [**I**.]

VIII. $x+y>0$ or $x+y=0$. [VII.] IX.

IXi. Suppose $x + y > 0$. [One of the possibilities in **VIII**. IXii. $x - y \geq 0$. [VI, IXi.] **IXiii**. $x \geq y$. **IXii**.

\mathbf{X} .

Xi. Suppose $x + y = 0$. [One of the possibilities in **VIII**. **Xii**. $x = y = 0$. **I**, **Xi**.] Xiii. $x \geq y$. [Xii.] **XI**. $x \geq y$. **VIII**, **IX**, **X**.

7. Statement (D). (Bernoulli's Inequality.)

Let $m \in \mathbb{N} \setminus \{0, 1\}$ and $\beta \in \mathbb{R}$. Suppose $\beta > 0$ or $-1 < \beta < 0$. Then $(1+\beta)^m > 1 + m\beta.$ Roughwork Proof of Statement (D). Ask: How to arrive at $(1+\beta)^m > 1+m\beta'$? Let $m \in \mathbb{N} \setminus \{0,1\}$ and $\beta \in \mathbb{R}$. Any equivalent formulation Suppose $\beta >0$ (a) $-<\beta <0$. $\lfloor \sqrt{m+1} \pm \frac{1}{2} \cdot \$ H_{h5w} er: $((+ \beta)^{m} - 1 > m \beta)$. Recall from school maths: Note that $(1+\beta)^{m}-1 = (1+\beta)^{m}-1^{m}$ $S'-t'=(S-t)(S^{n-1}+S^{n-2}t+S^{n-3}t^2+...$ = $[(1+\beta)-1]$ $[(1+\beta)^{m-1}+(1+\beta)^{m-2}+...+(1+\beta)+1]$ $+5^{2}t^{n-3}$ + 5 t^{n-2} + t^{n-1}) $-$ S_o ? = β \cdot $((+\beta)^{m-1} + (1+\beta)^{m-2} + ... + (1+\beta) + 1)$ Suppose $\beta > 0$. Then, since $\beta > 0$ and $\beta > 1$, $\mathcal{B}(\lvert_{\text{one}}\rvert).$ $(1+\beta)^{m}-1 = \beta \cdot \underbrace{\left[(1+\beta)^{m-1} + (1+\beta)^{m-2} + ... + (1+\beta) + 1 \right]}_{m \text{ terms}} \rightarrow \beta \cdot \underbrace{(1+1+...+1+1)}_{m \text{ copies}} = m \beta.$ $(Cose 2)$. Suppose $-1 < \beta < o$. Then, since $-\beta > o$ and $o < |+\beta < 1$, $1 - (1+\beta)^{m} = (-\beta) \cdot [(1+\beta)^{m-1} + (1+\beta)^{n-2} + ... + (1+\beta) + 1] < (-\beta) \cdot (1+1+...+1+1) = -m\beta$ Therefore, in any case, $(1+\beta)^m > 1+m\beta$.

Remark. Below is a more general version of **Bernoulli's Inequality**:

Let μ be a rational number, and β be a real number. *Suppose* $\mu \neq 0$ *and* $\mu \neq 1$ *, and* $\beta > -1$ *. The statements below hold:*

- (1) *Suppose* $\mu < 0$ *or* $\mu > 1$ *. Then* $(1 + \beta)^{\mu} \ge 1 + \mu \beta$ *.*
- (2) *Suppose* $0 < \mu < 1$ *. Then* $(1 + \beta)^{\mu} \le 1 + \mu \beta$ *.*
- (3) *In each of* (1), (2), equality holds iff $\beta = 0$.

- 8. We need expand the list of 'rules as regards inequalities' which we are tacitly assuming since school-days!
	- (1) Let $x, y \in \mathbb{R}$. $y x > 0$ iff $x < y$.
	- (1^*) Let $x, y \in \mathbb{R}$. $y x > 0$ iff $x \leq y$.
	- (2) Let $x, y, z \in \mathbb{R}$. If $x < y$ and $y < z$ then $x < z$.
	- (2^*) Let $x, y, z \in \mathbb{R}$. The statements below hold:

 $(2^*a)x \leq x.$

- (2^*b) If $(x \le y$ and $y \le x)$ then $x = y$.
- (2^*c) If $(x \leq y$ and $y \leq z)$ then $x \leq z$.
- (3) Let $x \in \mathbb{R}$. Exactly one of ' $x < 0$ ', ' $x = 0$ ', ' $x > 0$ ' is true.
- (4) Let $x, y \in \mathbb{R}$. Suppose $x < y$. Then the statements below hold:
	- $(4a)$ For any $u \in \mathbb{R}$, $x + u < y + u$ and $x u < y u$.
	- (4b) For any $u \in \mathbb{R}$, if $u > 0$ then $xu < yu$ and $x/u < y/u$.
	- (4c) For any $u \in \mathbb{R}$, if $u < 0$ then $xu > yu$ and $x/u > y/u$.

 (4^*) Let $x, y \in \mathbb{R}$. Suppose $x \leq y$. Then the statements below hold: (4^*a) For any $u \in \mathbb{R}$, $x + u \leq y + u$ and $x - u \leq y - u$. (4^*b) For any $u \in \mathbb{R}$, if $u > 0$ then $xu \leq yu$ and $x/u \leq y/u$. (4^*c) For any $u \in \mathbb{R}$, if $u < 0$ then $xu \geq yu$ and $x/u \geq y/u$.

... More rules:

- (5) Let $x, y, u, v \in \mathbb{R}$. Suppose $x < y$ and $u < v$. The statements below hold: $(5a) x + u < y + v.$
- (5b) Further suppose $x > 0$, $y > 0$, $u > 0$ and $v > 0$. Then $xu < yv$.

$$
(5^*)
$$
 Let $x, y, u, v \in \mathbb{R}$. Suppose $x \leq y$ and $u \leq v$.

 $(5^*a)x + u \leq y + v.$

- (5^{*}b) Further suppose $x \ge 0$, $y \ge 0$, $u \ge 0$ and $v \ge 0$. Then $xu \le yv$.
- (6) Let $x, y \in \mathbb{R}$. The statements below hold:

(6a) Suppose $xy > 0$. Then $(x > 0$ and $y > 0$) or $(x < 0$ and $y < 0$).

(6b) Suppose $xy < 0$. Then $(x > 0$ and $y < 0$) or $(x < 0$ and $y > 0)$.

 (6^*) Let $x, y \in \mathbb{R}$. The statements below hold:

 (6^*a) Suppose $xy \ge 0$. Then $(x \ge 0$ and $y \ge 0)$ or $(x \le 0$ and $y \le 0)$.

- (6*b) Suppose $xy \le 0$. Then $(x \ge 0$ and $y \le 0)$ or $(x \le 0$ and $y \ge 0)$.
- (7) Let $x \in \mathbb{R}$. Suppose $x \neq 0$. Then $x^2 > 0$.

 (7^*) Let $x \in \mathbb{R}$. $x^2 \geq 0$.