1	Mathematical	statements
т.	Manifellianteal	SUCCULITION.

A mathematical statement is a sentence with mathematical content, for which it is meaningful to say it is true or it is false. Examples: (divisible , even. (2) 'rational', 'irrational'. (3) 'differentiable'.

Some special features in mathematical statements:

- (a) Words or phrases with specific mathematical content have to be defined carefully.
- (b) Some words which appear in everyday language may have very specific meaning.
- (c) Very often ordering of words matters in the meaning.

No room for inaccuracies. O'For any ..., if ... then ...

No room for ambiguities.

- Examples

if ... for any ... the ... '.
(2) For any ... there exits ... ' versus

2. Various types of mathematical statements.

These which deserve attention:

- Definitions. Good/useful or bad/useless only; by default true.
- Conjectures. Theorems. Propositions. Lemma. We work for profis or dis-proofs for such statements.
- Axioms.

Accepted to be true without proof.
Motheratically useful when accepted to be true.

thee exits ... for any ... '

3.	Examples	\mathbf{of}	mathematical	statements.
----	----------	---------------	--------------	-------------

- (a) 1+1=2. Both one statements. (b) 1+2=4. But both are statements.
- (c) $\sqrt{2}$ is an irrational number. This word needs be defined carefully.
- (d) Pythagoras' Theorem.

Let $\triangle ABC$ be a triangle.

logical

structure

Suppose $\angle ACB$ is a right angle. Assumption livited $AB^2 = AC^2 + BC^2$. Assumption

More formal formulation:

For any triangle DABC, if LACB is a rightangle then $AB^2 = AC^2 + BC^2$.

**Examplin

(e) Converse of Pythagoras' Theorem.

Let $\triangle ABC$ be a triangle.

Words indicating $AB^2 = AC^2 + BC^2$. Assumption indicating $AB^2 = AC^2 + BC^2$. Then $\angle ACB$ is a right angle. A Conclusion

structure More formal formulation:

For any triangle DABC, if AB= AC+BC then LACB is a right angle.

(f) Thales' Theorem.

Let Γ be a circle, and A, B, C be three distinct points on the circumference of Γ .

Suppose AB passes through the centre of Γ .

Then $\angle ACB$ is a right angle.

Assumption? Conclusion?

Converse of Thales' Theoren:
Let T be a circle, and A, B, C be three distinct points on the circumference of T.
Suppose LACB is a right angle.
Then AB passes through the centre of T.

Thales' Theorem. Assumption: Cordinion: AB passes through the centre of T. a right ample. LACB is centre of T Assumption: Condusion AB passes through the centre of T. LACB is a right angle. Converse of Thales' Theorem.

(g) Fermat's Horizontal Tangent Theorem.

Let I be an open interval, c be a point in I, and $f: I \longrightarrow \mathbb{R}$ be a function which is differentiable at c. Suppose f attains a relative extremum at c. Then f'(c) = 0.

Assumption? Conclusion?

Converse of Termat's Horizontal Tangent Theorem:

Let I be an open interval, c be a point in I, and

f: I > R be a function which is differentiable at c.

Suppose f(c) = 0.

Then f attains a relative extremum at c.

Fernat's Horizontal Tangent Theorem

Assumption:

of attains a relative extremum at c (at which f is differentiable).

4. Predicates.

A **predicate with variables** x, y, z, \cdots is a statement 'modulo' the ambiguity of possibly one or several variables x, y, z, \cdots .

It may fail to be a statement.

However, provided we have specified x, y, z, \cdots in such a predicate, it becomes a statement, for which it makes sense to say it is true or false.

The key examples of predicates in school mathematics are:

- Equations with one unknown (or more).
- Inequalities with one unknown (or more).

We can also construct a statement out of a predicate by the use of quantifiers which eliminate the ambiguity due to the presence of the variables.

5. Equations and inequalities as predicates.

(a) Every **equation** with one unknown (or more) is a predicate in which the variables are the unknowns of the equation.

Examples.

(i)
$$x^2 - 1 = 0$$
.

(ii)
$$x^2 + 1 = 0$$
.

(iii)
$$x + 2y + 3 = 0$$
.

(iv)
$$x^2 + y^2 = 1$$
.

(v)
$$x^2 - y^2 = 1$$
.

(vi)
$$x + y + z = 1$$
.

(vii)
$$x^2 + y^2 + z^2 = 1$$
.

(viii)
$$x^2 + y^2 = z^2$$
.

(b) Every **inequality** with one unknown (or more) is a predicate in which the variables are the unknowns of the inequality.

Examples.

(i)
$$x^2 - 1 \ge 0$$
.

(ii)
$$x^2 + 1 > 0$$
.

(iii)
$$x + 2y + 3 \le 0$$
.

(iv)
$$x^2 + y^2 < 1$$
.

(v)
$$x^2 - y^2 < 1$$
.

(vi)
$$x + y + z \ge 1$$
.

(vii)
$$x^2 + y^2 + z^2 \le 1$$
.

(viii)
$$x^2 + y^2 \le z^2$$
.

6. What is 'solving an equation/inequality'?

To **solve** an equation/inequality with unknowns x, y, z, \cdots amongst so-and-so is to specify, for that equation/inequality regarded as a predicate with variables x, y, z, \cdots , all the 'concrete objects' amongst so-and-so which, upon 'substitution into the variables' of the predicate, turn the predicate into a true statement. Each such 'concrete object' which turn the predicate into a true statement is called a **solution** for that equation/inequality.

In practice, this is what we usually do:

- First perform some manipulation, starting from the equation/inequality concerned, in order to find all possible candidates for x, y, z, \cdots .
- Then substitute these candidates for x, y, z, \cdots into the predicate (which is the equation/inequality concerned) to see whether we obtain a true statement.

Illustration:

What do we knear by

"All we have done is saying
$$x^2-3x+2=0$$
.

"Solve $(x-1)(x-2)=0$.

 $x^2-3x+2=0$.

This is not enough.

"Checking": If $x=1$ then $x^2-3x+2=...=0$. [It is not every the solution of the reals).

"Checking": If $x=1$ then $x^2-3x+2=...=0$. [It is not every the solution of the reals).

7. Further Examples on mathematical statements and predicates.

(a) For any $n \in \mathbb{N}$, $n^2 + n$ is an even integer.

We are used to read it in school maths as: Let n \(\mathbb{N} \). n^2 + h is an even integer.

Remark.

**N 'starts from' O

in this course.

(b) Bernoulli's Inequality.

For any $m \in \mathbb{N} \setminus \{0, 1\}$, for any $\beta \in (-1, +\infty) \setminus \{0\}$, $(1 + \beta)^m > 1 + m\beta$.

We may read it as :

Let $m \in \mathbb{N} \setminus \{0,1\}$. Let $\beta \in (-1,+\infty) \setminus \{0\}$. $(1+\beta)^m > 1+m\beta$.

(c) Mean-Value Theorem.

Let $a, b \in \mathbb{R}$. Suppose a < b.

Let $f:[a,b] \longrightarrow \mathbb{R}$ be a function. Suppose f is continuous on [a,b] and f is differentiable on (a,b).

Then there exists some $c \in (a, b)$ such that f(b) - f(a) = (b - a)f'(c).

This indicates the presence of an existential quartifier

In plan language, this reads:

Somewhere amongst the numbers
in the interval (a, b), there is

something which we label as c,

for which 'f(b)-f(a) = (b-a) f'(c)' holds.

Or its own,

'f(b)-f(a) = (b-a) f'(c)'

is a predicate

with variable c.

(d) Definition of differentiability.

Let I be an open interval, and $c \in I$.

Let $f: I \longrightarrow \mathbb{R}$ be a function.

f is said to be differentiable at c if the limit $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists in \mathbb{R} .

This indicates we are reading a definition.

This is understood as if and only if.

This is a convention for definitions it this course.

'Defining condition',
explaining what 'being differentiable
at a point' means in precise
mathematical terms.

Assumption

Mean Value Theorem.

Assumptions:

- · a, b E R. acb
- f: [a,b] > R is a function.
 f is continuous on [a, b].
 - f is differentiable on (a.b).

Conclusion:

· There exists some $c \in (a, b)$ such that

$$f(b) - f(a) = (b-a) f(c)$$

(e) **Definition of divisibility**. Let $a, b \in \mathbb{Z}$.

a is said to be divisible by

Defining condition, explaining what 'being drivible' means in precise mathematical terms.

a is said to be divisible by b if there exists some $k \in \mathbb{Z}$ such that a = kb.

Indicator that we are talking about a definition.

In plain language, this reads:

Somewhere amongst the integers,

there is something which we label as k for convenience,

for which 'a = kb' is true.

It does not matter whether we know how to write down

the value of such a k or not.

(f) Definition of even-ness and odd-ness for integers.

Let $n \in \mathbb{Z}$.

*n is said to be even if n is divisible by 2.

* n is said to be odd if n is not divisible by 2.

We are defining 'ever-ness', 'ordal-ness' in terms of divisibility.

So if you do not understand the definition of divisibility correctly,

you will not get 'ever-ness', 'ordaness' correctly.

(g) Definition of prime numbers.

Let $p \in \mathbb{Z}$. Suppose $|p| \geq 2$.

p is said to be a prime number if the following condition holds:

for any $k \in \mathbb{Z}$, if p is divisible by k then (k = 1 or k = -1 or k = p or k = -p). This as a whole gives the meaning of being a prime number in precise mathematical terms.

Drecise mathematical terms. We are defining being a prime number in terms of divisibility

More 'condensed' formulation:

'p is divisible by no integer other than 1, -1, p, -p.

(h) Division Algorithm (for natural numbers).

Let $a, b \in \mathbb{N}$. Suppose $a \neq 0$.

Then there exist some unique $q, r \in \mathbb{N}$ such that b = qa + r and $0 \le r < a$.

This is a very 'condensed' way of writing:

Let a, b \in N. Suppose a \to . Then both of \(\text{O}, \text{Q} \) are true:

There exist some q, r \in N \text{ sud that}

b = qa + r \text{ and } 0 \le r < a.

Suppose q, r, q', r' \in N.

Turther suppose b = qa + r, and b = q'a + r', and 0 \le r'< a.

Then q = q' \text{ and } r = r'.

(i) Definition of arithmetic progression.

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of numbers.

 $\{a_n\}_{n=0}^{\infty}$ is said to form an arithmetic progression if there exists some number d such that for any $n \in \mathbb{N}$, $a_{n+1} - a_n = d$.

The number d is called the common difference of this arithmetic progression.

This is nothing but the old story which you have learnt:

ao a, az az az ay as ab ... 'number

a,-a,-d a,-a,-d a,-a,-d a,-a,-d a,-a,-d a,-a,-d ... (ine'

(j) Definition of geometric progression.

Let $\{b_n\}_{n=0}^{\infty}$ be an infinite sequence of non-zero numbers.

 $\{b_n\}_{n=0}^{\infty}$ is said to form a geometric progression if there exists some non-zero number r such that for any $n \in \mathbb{N}$, $b_{n+1}/b_n = r$.

The number r is called the common ratio of this geometric progression.