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Solution 9

Section 8.2

1. Let fn(x) = xn

1+xn and fn converges to f .

Then f must be the pointwise limit of fn,

f(x) =


0, x ∈ [0, 1)
1
2 , x = 1
1, x ∈ (1, 2]

Obviously, f is not continuous, and hence fn doesn’t converge uniformly to f .

4. Let ε > 0 be given. Then by the uniform convergence of {fn} to f on I, since each fn is
continuous on I, we have that f is continuous on I. Hence there exists δ > 0 such that
whenever x ∈ I and |x− x0| < δ, we have

|f(x)− f(x0)| <
ε

2
.

Now since {xn} converges to x0, for the δ chosen above, there exists N1 ∈ N such that
whenever n ≥ N , we have

|xn − x0| < δ.

Of course xn ∈ I for all n, so whenever n ≥ N1, we have

|f(xn)− f(x0)| <
ε

2
. (1)

Also, by the uniform convergence of fn to f on I, there exists N2 ∈ N such that whenever
n ≥ N2 and x ∈ I, we have

|fn(x)− f(x)| < ε

2
;

in particular, whenever n ≥ N2, since xn ∈ I we have

|fn(xn)− f(xn)| < ε

2
. (2)

Hence combining (1) and (2), we see that if we take N = max{N1, N2}, then whenever
n ≥ N , we have

|fn(xn)− f(x0)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x0)| <
ε

2
+
ε

2
= ε.

This proves that
lim
n→∞

fn(xn) = f(x0).

Remark. The proof may look complicated, but the idea is simple: when n is big,

f(xn) ' f(x0)

by continuity of f , and
fn(xn) ' f(xn)

by uniform convergence of fn to f . Hence when n is big,

fn(xn) ' f(x0),

and this is the proof above.
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5. Let ε > 0 be given. Then by uniform continuity of f , there exists δ > 0 such that whenever
x, y ∈ R satisfies |x− y| < δ, we have

|f(x)− f(y)| < ε; (3)

in particular, if N ∈ N is such that N > 1
δ , then for any n ≥ N and any x ∈ R, we have∣∣∣∣(x+

1

n

)
− x
∣∣∣∣ =

1

n
≤ 1

N
< δ,

which implies, by (3), that

|fn(x)− f(x)| =
∣∣∣∣f (x+

1

n

)
− f(x)

∣∣∣∣ < ε.

This proves the uniform convergence of fn to f on R.

6.

f(x) =

{
1, x = 0
0, x ∈ (0, 1]

Obviously, f is not continuous, and hence fn doesn’t converge uniformly to f .

7. Since each fn is bounded on A, for each n ∈ N, there exists a constant Mn such that

|fn(x)| ≤Mn

for all x ∈ A. Now take ε = 1. Then by uniform convergence of fn to f on A, there exists
N ∈ N such that whenever n ≥ N and x ∈ A, we have

|fn(x)− f(x)| < 1;

in particular, for any x ∈ A, we have

|f(x)| ≤ |f(x)− fN (x)|+ |fN (x)| < 1 +MN .

This proves that f is bounded on A.

Remark. One should observe that the proof is simple if we use sup-norm: Indeed since
fn is bounded by Mn on A, we have

‖fn‖A ≤Mn.

But since fn converges to f uniformly on A, there exists N ∈ N such that for any n ≥ N ,
we have

‖fn − f‖A < 1.

Hence using the triangle inequality for the sup-norm, we get

‖f‖A ≤ ‖f − fN‖A + ‖fN‖A < 1 +MN ,

which says that f is bounded on A.

9. Let f(x) := lim fn(x) = limxn/ n = 0, since x ∈ [0, 1]. Hence f is differentiable.

Moreover, ‖ fn − f ‖[0,1] = sup
x∈[0,1]

xn/ n ≤ 1/ n→ 0.

Thus fn converges uniformly to the differentiable function f on [0, 1].

Now f ′n(x) = xn−1 converges pointwisely to g(x) := lim f ′n(x) = limxn−1 =

{
1, x = 1
0, otherwise

But f ′(x) = 0 ⇒ f ′(1) = 0 6= 1 = g(1).
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11. Let Fn(x) =
∫ x
a f
′
n(t)dt and F (x) =

∫ x
a g(t)dt. Note that g is continuous, therefore, F is

well defined.

Claim: Fn converges uniformly to F .

proof of the Claim: Given ε > 0, since f ′n converges uniformly to g, then there exists
N > 0 such that for any n > N , we have

|f ′n(t)− g(t)| < ε

for any t ∈ [a, b].

For any x ∈ [a, b] and n > N ,

|Fn(x)− F (x)| = |
∫ x

a
(f ′(t)− g(t))dt|

≤
∫ x

a
|f ′(t)− g(t)|dt

≤
∫ x

a
εdt

≤ ε(b− a).

Hence, Fn converges uniformly to F .

By fundamental theorem of calculus,∫ x

a
f ′n(t)dt = fn(x)− fn(a).

Note that the left hand side will converge uniformly to F (x) and the right hand side will
converge uniformly to f(x)− f(a). Hence, we obtain∫ x

a
g(t)dt = f(x)− f(a).

Differentiating above identity, then we have g(x) = f ′(x).

12. One can check that e−nx
2

converges uniformly to 0 on [1, 2], as n → ∞: just note that
‖e−nx2‖[1,2] = e−n → 0 as n→∞. Hence

lim
n→∞

∫ 2

1
e−nx

2
dx =

∫ 2

1
0dx = 0.

Alternatively, when x ∈ [1, 2], e−nx
2 ≤ e−n, thus

0 ≤
∫ 2

1
e−nx

2
dx ≤ e−n.

Since limn→∞ e
−n = 0, hence

lim
n→∞

∫ 2

1
e−nx

2
dx = 0.

13. When a > 0, sinnx
nx converges to 0 uniformly on [a, π], since∥∥∥∥sinnx

nx

∥∥∥∥
[a,π]

≤ 1

na
→ 0
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as n→∞. Hence

lim
n→∞

∫ π

a

sinnx

nx
dx =

∫ π

a
0dx = 0.

Now it is easy to check that sinx
x is a bounded function on (0,∞) (in fact | sinxx | ≤ 1 for all

x ∈ (0,∞)). Thus given ε > 0,∣∣∣∣∫ ε

0

sinnx

nx
dx

∣∣∣∣ ≤ ∫ ε

0
1dx = ε

for all n ∈ N. Since by our earlier result,

lim
n→∞

∫ π

ε

sinnx

nx
dx = 0,

there exists N ∈ N such that for all n ≥ N , we have∣∣∣∣∫ π

ε

sinnx

nx
dx

∣∣∣∣ < ε.

Together, whenever n ≥ N , we have∣∣∣∣∫ π

0

sinnx

nx
dx

∣∣∣∣ < 2ε.

This proves

lim
n→∞

∫ π

0

sinnx

nx
dx = 0.

Alternatively, we can proceed as follows: For a > 0,

|
∫ π

a

sin(nx)

nx
dx| ≤

∫ π

a

| sin(nx)|
nx

dx ≤
∫ π

a

1

nx
dx =

1

n
(

1

a2
− 1

π2
).

Let n→∞, then

lim
n→∞

∫ π

a

sin(nx)

nx
dx = 0.

For the case a = 0, changing of variable y = nx, then∫ π

0

sinnx

nx
dx =

1

n

∫ nπ

0

sin y

y
dy.

By Dirichlet test (or as we have seen in the last homework), we know that
∫∞
0

sin y
y dy

converges, and we denote it by A. Therefore, limn→∞
∫ nπ
0

sin y
y dy = A, and hence

lim
n→∞

1

n

∫ nπ

0

sin y

y
dy = 0.

16. By definition, fn is continuous except finite points {r1, r2 . . . rn}, thus fn is Riemann inte-
grable. Obviously, f1(x) ≤ f2(x) . . . fn(x) ≤ . . . and |fn| ≤ 1, hence f(x) = limn→∞ fn(x)
is well defined.

If x is irrational number, then fn(x) = 0 for all n. So f(x) = limn→∞ fn(x) = 0.

If x = rk for some k, then fn(x) = 1 for all n ≥ k. So f(x) = 1.

Hence, f(x) = D(x), where D(x) is Dirichlet function. D is not Riemann integrable on
[0, 1].


