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Solution 4

Section 6.4

3. It is trivial for n = 2. Assume it is true for n = k. Then for n = k£ + 1, we have

(f9)* V()

= ((fg)(k)), (z) = @ Z < k > f=d) (x) g(j)(x) , by induction hypothesis
j=0

k k+1
- ( ";‘ SEI (@) gD ) + 37 ( ; k . ) FEH) (@) g9 ()

Jj=1

= () g(x) + Zk: K k > + ( i E ) ﬂ FE=D (1) gD (2) + f(2) g%V (2)

k k B k! k! CkNk+1-5)+Ey [ k+1
(j>+<j—1)_j!(k—j)!+(j—1)!(k+1—j)!_ Sk 1-)) ‘( j )

By M.L, it is true for all n.

10. Method 1
1 1
By Taylor theorem on x — e*, x > 0, el/=? > 1+?+---+m > m,fork;EN.
h A h
Hence () = < (klz**) =Kz | = lim hiz) =0, for ke N.
xk |z |k = |z |k a—0 xk
Method 2
h(x) e—l/an2 e—y2 yk kyk_l ]{Zyk_2
lim —= = lim = lim = lim =5 = lim - = lim =
a0 xk =0 xk Y—00 y_k y—o0 e¥ y—oo 2yeY y—oo 2e¥
lim C/yey2 if k is odd
= Y s =0, for some C := C(k) € R.
lim C/e¥", if kis even
Y—00

Now h'(0) = lin%) hiz) = 0, by L’Hopital rule L.
xr— x
Assume it is true for n < k. Then for n = k, by successive application of L’Hopital rule I,
o h(@ . KW@ - hEY@)  a(0) Y
0=l o =i = =i g = P O=0
By M.L, h(™(0) = 0 for all n € N.

By Taylor theorem, 3 £ between x and 0 s.t.

h(n) (O) " + h(nJrl) (5) xn—f—l — h(n+1)(§) :L‘n—&-l
n! (n+1)! (n+1)!

h(x) = h(0) + A (0)x +--- + =: R,(z)
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12.

Hence, for x # 0, lim R, (z) = h(x) = e~ 1/a? £ 0.

Remark It is very difficult here to derive the result, lim R,,(z) # 0 for = # 0, from

(n+1)
Rofa) = 2

RS directly by Leibniz rule. If you don’t believe, you may try.
n

Use Taylor Expansion of sinz at point xg = 0, if |x| < 1, there exists ¢ with |¢| < 1 such

that

. .%'3 + .’I}s C7
inr=o— —+—— .
ST =TT T 190 T 5040

3

Then we have |sinz — (z — & + %)| = |5040| < =515+
(a) By Theorem 6.4.4, f'(0) = --- = f"(0) = 0, but f3)(0) # 0. f has neither a relative
minimum nor relative maximum at z = 0.
(b) By Theorem 6.4.4, f'(0) = --- = f”(0) = 0, but f®)(0) # 0. f has neither a relative

minimum nor relative maximum at = 0.
(¢) K'(0) =1. f has neither a relative minimum nor relative maximum at z = 0.

(d) By Theorem 6.4.4, f'(0) = --- = f®(0) = 0, but f#¥(0) > 0. f has a relative

minimum at x = 0.

Supplementary Exercises

1.

Claim: Fixn e N, 0 <j <27, thenf(a:-\—(l—;;z) >_2nf( )+ <1_;,L>f(y)

It is trivial for n = 2. Assume it is true for n = k. Then for n = k + 1.
Note that

Hence, if j < 2%, then by induction hypothesis and case n = 2, we have
J J
f (2k+1x + (1 - 2k+1) y)
r+y J j (1 1 j
< 1- 2 < (= - 1- 2
<51 () (1-4) 10 < 3 (7@ + 50w) + (1- %) 1)

< gt @)+ (1= o ) 10

Now, if 2F < j < 25+ then 0 < 2F+! — j < 2% hence replace j by 2¥T! — j and x by v,
we get the same result.

By M.I., the claim is true for all n.

Let A € [0,1], V n € N, define jn := [A2"] < 2. Hence A2" — 1 < j, < A\2™.

1
Then A — on < ;—Z <A = lim 2 2— = )\, by Squeeze theorem.
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4.

. The product of two convex functions is in general not convex. Take f(x) := z, g(z) :=

2TL

By the claim, V n € N, f<gZx+ (1—%) y) < j%f($)+ (1—].”> f()
Af(x) 4+ (1 = AN)f(y), by continuity.

Letting n — 400, we get f(Azx + (1 — N)y) <

Remark The result is not in general true if the hypothesis of continuity is omitted, i.e.
there exists a discontinuous function, which is thus not convex, satisfying the inequality
stated in the question. However, it is not easy to construct such example.

. Suppose f is convex, then by theorem 1.5 of Notes 1, we have f’ is increasing function.

Let z # y € [a,b]. By mean value theorem, 3¢ in between x and y such that

Hence

fy) —f=) =12 fl@), ifz<y.
y—x < f(z), ifz>uy.
Suppose f(y) — f(x) > f'(z)(y — z), Vz,y € [a,b]. We attempt to show that f’ is
increasing. Let y > x, by our assumption, we have

fly) = f(@) > f'(z)(y — z)

and
f@) = fly) = fy)(z—y)

which imply

Therefore, f’ is increasing. Again by theorem 1.5 of Notes 1, f is concex on [a, b].

1
N3
1

on (0,1). Then f"(x) =0, ¢'(x) = —556_3/2, J'(z) = %x_5/2 >0 on (0,1). Hence f, g
are convex. Now (fg)(z) = /z on (0,1).

1
But (fg)'(z) = B
The composition of two convex functions is also in general not convex. Take f(z) = —z,
g(z) = 2%, then f and g are both convex on R, but (f o g)(z) = f(2?) = —2? which is
certainly not convex on R.

1
12 = (fg)"(z) = —Zx*3/2 < 0on (0,1). Hence fg is not convex.

(a) Method 1 — Mathematical Induction
It is trivial for n = 2. Assume it is true for n = k. Then for n = k + 1, we have
Jazr + Aewa + -+ M + App1Tx41)
< Af(@a) + Ao f(z2) + -+
Ak Ak

FOw + A — kg
At Aerr) f A+ At b A1+ Akg1
<Mf(xn) + Xaf(xa) +---

+(Ai + Ait1) (

xk+1>, by induction hypothesis

M
Ak + Akgt

Ak

) +
J(@) Akt1 + Mgt

f<:ck+1>), by case n = 2
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= Mf(@1) + Ao f(@2) + - 4 A (@r) + Akrf(Tpp1)-
By M.I., it is true for all n.

Method 2 — Supporting Line: y = m(z — «) + f(«), « as defined below.

Denote o := A\x1 + Aezy + - -+ + Ay € (a,b), since \; € (0,1), Z A= 1.
i=1

Let m € [f(c), fi.(«)] # @, since [’ (a) < f\(«) due to convexity of f.

(see Note 3 Theorem 2.2).

fosa 1@ MZMQ)ZW
r— rz—at r—

o< I ) S@=HD ey
r— T—aT r—

(see Note 3 Theorem 2.1 and Theorem 2.2).
Together, we have f(z) > m(z — a) + f(a), ¥ = € (a,b), since it is trivial if z = a.

In particular, for each i, we have

f(xi) 2 m(zi — o) + f(a)
i=1 i=1 i=1 i=1

Hence A1 f(x1) + Aaf(zo) + -+ Mo f(zn) = f(Az1 + Aaza + -+ + Apy).

(b) Let ay,as,...,a, > 0. Note that (¢*)” = e” > 0, hence x > e” is convex.

By Jensen inequality, we have

ay+az+---+ap
n

1 1 1 1 1 1
_ 7elna1 + 7€lna2 N 7€lnan > e;lna1+ﬁlna2+...+; Inan
n

= ewm(@razan) — o
which is the AM-GM inequality.

5. Since f(x) = e” is strictly convex, for z € (—o0, 00). Therefore,

f(;(ploga:) + ;(qlogy)) < ;f(plogw) + ;f(qlogy)

STy S —+ —
p q
with ” =7 holds iff plogx = qlogy i.e. 2P = y1.

1
p
;

1
n n q
6. Let A= <Z|ak|p) B= (Z |bk,q> T |a/’;| and y = i’;" Then
k=1 k=1
in =1 and Zyg =1
k=1 k=1
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n
It suffices to show Z zryr < 1. By Young’s inequality,
k=1
1 1
cryr <~ + — Y
pt g7k
Sum over k, we have
n
1 1
Z Tpyp < -+ - =1
k=1 P4

with ” =7 holds iff 2} =y, V1 <k <n.



