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Solution 4

Section 6.4

3. It is trivial for n = 2. Assume it is true for n = k. Then for n = k + 1, we have

(fg)(k+1)(x)

=
(

(fg)(k)
)′

(x) =
d

dx

 k∑
j=0

(
k
j

)
f (k−j)(x) g(j)(x)

, by induction hypothesis

=

k∑
j=0

d

dx

[(
n
k

)
f (k−j)(x) g(j)(x)

]

=

k∑
j=0

(
k
j

)
[f (k+1−j)(x) g(j)(x) + f (k−j)(x) g(j+1)(x)]

=

k∑
j=0

(
k
j

)
f (k+1−j)(x) g(j)(x) +

k+1∑
j=1

(
k

j − 1

)
f (k+1−j)(x) g(j)(x)

= f (k+1)(x) g(x) +

k∑
j=1

[(
k
j

)
+

(
k

j − 1

)]
f (k+1−j)(x) g(j)(x) + f(x) g(k+1)(x)

=
k+1∑
j=0

(
k + 1
j

)
f (k+1−j)(x) g(j)(x), since(

k
j

)
+

(
k

j − 1

)
=

k!

j!(k − j)!
+

k!

(j − 1)!(k + 1− j)!
=
k!(k + 1− j) + k!j

j!(k + 1− j)!
=

(
k + 1
j

)
By M.I., it is true for all n.

10. Method 1

By Taylor theorem on x 7→ ex, x ≥ 0, e1/x
2 ≥ 1 +

1

x2
+ · · ·+ 1

k!x2k
≥ 1

k!x2k
, for k ∈ N.

Hence

∣∣∣∣h(x)

xk

∣∣∣∣ =
e−1/x

2

| x |k
≤ 1

| x |k
(k!x2k) = k!| x |k ⇒ lim

x→0

h(x)

xk
= 0, for k ∈ N.

Method 2

lim
x→0

h(x)

xk
= lim

x→0

e−1/x
2

xk
= lim

y→∞

e−y
2

y−k
= lim

y→∞

yk

ey2
= lim

y→∞

kyk−1

2yey2
= lim

y→∞

kyk−2

2ey2
= · · ·

=

 lim
y→∞

C/yey
2
, if k is odd

lim
y→∞

C/ey
2
, if k is even

= 0, for some C := C(k) ∈ R.

Now h′(0) = lim
x→0

h(x)

x
= 0, by L’Hôpital rule I.

Assume it is true for n < k. Then for n = k, by successive application of L’Hôpital rule I,

0 = lim
x→0

h(x)

xk
= lim

x→0

h′(x)

kxk−1
= · · · = lim

x→0

h(k−1)(x)

k!x
=
h(k)(0)

k!
⇒ h(k)(0) = 0

By M.I., h(n)(0) = 0 for all n ∈ N.

By Taylor theorem, ∃ ξ between x and 0 s.t.

h(x) = h(0) + h′(0)x+ · · ·+ h(n)(0)

n!
xn +

h(n+1)(ξ)

(n+ 1)!
xn+1 =

h(n+1)(ξ)

(n+ 1)!
xn+1 =: Rn(x)
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Hence, for x 6= 0, limRn(x) = h(x) = e−1/x
2 6= 0.

Remark It is very difficult here to derive the result, limRn(x) 6= 0 for x 6= 0, from

Rn(x) :=
h(n+1)(ξ)

(n+ 1)!
xn+1 directly by Leibniz rule. If you don’t believe, you may try.

12. Use Taylor Expansion of sinx at point x0 = 0, if |x| ≤ 1, there exists c with |c| < 1 such
that

sinx = x− x3

6
+

x5

120
− c7

5040
.

Then we have | sinx− (x− x3

6 + x5

120)| = | c75040 | <
1

5040 .

14. (a) By Theorem 6.4.4, f ′(0) = · · · = f ′′(0) = 0, but f (3)(0) 6= 0. f has neither a relative
minimum nor relative maximum at x = 0.

(b) By Theorem 6.4.4, f ′(0) = · · · = f ′′(0) = 0, but f (3)(0) 6= 0. f has neither a relative
minimum nor relative maximum at x = 0.

(c) h′(0) = 1. f has neither a relative minimum nor relative maximum at x = 0.

(d) By Theorem 6.4.4, f ′(0) = · · · = f (3)(0) = 0, but f (4)(0) > 0. f has a relative
minimum at x = 0.

Supplementary Exercises

1. Claim: Fix n ∈ N, 0 ≤ j ≤ 2n, then f

(
j

2n
x+

(
1− j

2n

)
y

)
≤ j

2n
f(x) +

(
1− j

2n

)
f(y)

It is trivial for n = 2. Assume it is true for n = k. Then for n = k + 1.

Note that

j

2k+1
x+

(
1− j

2k+1

)
y =

j

2k
x

2
+

(
1− j

2k

)
y

2
+

[
j

2k
+

(
1− j

2k

)]
y

2

=
j

2k

(
x+ y

2

)
+

(
1− j

2k

)
y

Hence, if j ≤ 2k, then by induction hypothesis and case n = 2, we have

f

(
j

2k+1
x+

(
1− j

2k+1

)
y

)
≤ j

2k
f

(
x+ y

2

)
+

(
1− j

2k

)
f(y) ≤ j

2k

(
1

2
f(x) +

1

2
f(y)

)
+

(
1− j

2k

)
f(y)

≤ j

2k+1
f(x) +

(
1− j

2k+1

)
f(y)

Now, if 2k < j ≤ 2k+1, then 0 ≤ 2k+1 − j < 2k, hence replace j by 2k+1 − j, and x by y,
we get the same result.

By M.I., the claim is true for all n.

Let λ ∈ [0, 1], ∀ n ∈ N, define jn := [λ2n] ≤ 2n. Hence λ2n − 1 < jn ≤ λ2n.

Then λ− 1

2n
<
jn
2n
≤ λ ⇒ lim

jn
2n

= λ, by Squeeze theorem.
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By the claim, ∀ n ∈ N, f

(
jn
2n
x+

(
1− jn

2n

)
y

)
≤ jn

2n
f(x) +

(
1− jn

2n

)
f(y)

Letting n→ +∞, we get f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), by continuity.

Remark The result is not in general true if the hypothesis of continuity is omitted, i.e.
there exists a discontinuous function, which is thus not convex, satisfying the inequality
stated in the question. However, it is not easy to construct such example.

2. Suppose f is convex, then by theorem 1.5 of Notes 1, we have f ′ is increasing function.
Let x 6= y ∈ [a, b]. By mean value theorem, ∃ξ in between x and y such that

f(y)− f(x) = f ′(ξ)(y − x).

Hence

f(y)− f(x)

y − x
= f ′(ξ) =

{
≥ f(x), if x < y.
≤ f(x), if x > y.

Suppose f(y) − f(x) ≥ f ′(x)(y − x), ∀x, y ∈ [a, b]. We attempt to show that f ′ is
increasing. Let y > x, by our assumption, we have

f(y)− f(x) ≥ f ′(x)(y − x)

and
f(x)− f(y) ≥ f ′(y)(x− y)

which imply

f ′(y) ≥ f(x)− f(y)

x− y
=
f(y)− f(x)

y − x
≥ f ′(x).

Therefore, f ′ is increasing. Again by theorem 1.5 of Notes 1, f is concex on [a, b].

3. The product of two convex functions is in general not convex. Take f(x) := x, g(x) :=
1√
x

on (0, 1). Then f ′′(x) = 0, g′(x) = −1

2
x−3/2, g′′(x) =

3

4
x−5/2 ≥ 0 on (0, 1). Hence f, g

are convex. Now (fg)(x) =
√
x on (0, 1).

But (fg)′(x) =
1

2
x−1/2 ⇒ (fg)′′(x) = −1

4
x−3/2 < 0 on (0, 1). Hence fg is not convex.

The composition of two convex functions is also in general not convex. Take f(x) = −x,
g(x) = x2, then f and g are both convex on R, but (f ◦ g)(x) = f(x2) = −x2 which is
certainly not convex on R.

4. (a) Method 1 − Mathematical Induction

It is trivial for n = 2. Assume it is true for n = k. Then for n = k + 1, we have

f(λ1x1 + λ2x2 + · · ·+ λkxk + λk+1xk+1)

≤ λ1f(x1) + λ2f(x2) + · · ·

+(λk + λk+1)f

(
λk

λk + λk+1
xk +

λk
λk+1 + λk+1

xk+1

)
, by induction hypothesis

≤ λ1f(x1) + λ2f(x2) + · · ·

+(λk + λk+1)

(
λk

λk + λk+1
f(xk) +

λk
λk+1 + λk+1

f(xk+1)

)
, by case n = 2
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= λ1f(x1) + λ2f(x2) + · · ·+ λkf(xk) + λk+1f(xk+1).
By M.I., it is true for all n.

Method 2 − Supporting Line: y = m(x− α) + f(α), α as defined below.

Denote α := λ1x1 + λ2x2 + · · ·+ λnxn ∈ (a, b), since λi ∈ (0, 1),

n∑
i=1

λi = 1.

Let m ∈ [f ′−(α), f ′+(α)] 6= ∅, since f ′−(α) ≤ f ′+(α) due to convexity of f .

(see Note 3 Theorem 2.2).

If x > α,
f(x)− f(α)

x− α
≥ lim

x→α+

f(x)− f(α)

x− α
= f ′+(α) ≥ m.

If x < α,
f(x)− f(α)

x− α
≤ lim

x→α−

f(x)− f(α)

x− α
= f ′−(α) ≤ m.

(see Note 3 Theorem 2.1 and Theorem 2.2).

Together, we have f(x) ≥ m(x− α) + f(α), ∀ x ∈ (a, b), since it is trivial if x = α.

In particular, for each i, we have

f(xi) ≥ m(xi − α) + f(α)
n∑
i=1

λif(xi) ≥ m

(
n∑
i=1

λixi − α
n∑
i=1

λi

)
+ f(α)

n∑
i=1

λi

Hence λ1f(x1) + λ2f(x2) + · · ·+ λnf(xn) ≥ f (λ1x1 + λ2x2 + · · ·+ λnxn).

(b) Let a1, a2, . . . , an > 0. Note that (ex)′′ = ex > 0, hence x 7→ ex is convex.

By Jensen inequality, we have

a1 + a2 + · · ·+ an
n

=
1

n
eln a1 +

1

n
eln a2 + · · ·+ 1

n
eln an ≥ e

1
n
ln a1+

1
n
ln a2+···+ 1

n
ln an

= e
1
n
ln(a1a2···an) = n

√
a1a2 · · · an,

which is the AM-GM inequality.

5. Since f(x) = ex is strictly convex, for x ∈ (−∞,∞). Therefore,

f(
1

p
(p log x) +

1

q
(q log y)) ≤ 1

p
f(p log x) +

1

q
f(q log y)

⇔ xy ≤ xp

p
+
yq

q

with ” = ” holds iff p log x = q log y i.e. xp = yq.

6. Let A =

(
n∑
k=1

|ak|p
) 1

p

, B =

(
n∑
k=1

|bk|q
) 1

q

, xk =
|ak|
A

and yk =
|bk|
B

. Then

n∑
k=1

xpk = 1 and
n∑
k=1

yqk = 1.
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It suffices to show
n∑
k=1

xkyk ≤ 1. By Young’s inequality,

xkyk ≤
1

p
xpk +

1

q
yqk.

Sum over k, we have
n∑
k=1

xkyk ≤
1

p
+

1

q
= 1

with ” = ” holds iff xpk = yqk, ∀1 ≤ k ≤ n.


