
2014-15 Second Term MATH2060B 1

Solution 3

Section 6.3

4. It is clear that both f(0) and g(0) are zero. Since∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ =
f(x)

|x|
≤ |x|

for all x 6= 0, by Sandwich theorem, f ′(0) exists and equals 0. Also, it is easy to see that
g′(0) exists, and equals cos 0 = 1 6= 0. Thus Theorem 6.3.1 applies, and

lim
x→0

f(x)

g(x)
=
f ′(0)

g′(0)
= 0.

We cannot apply L’Hopital’s rule Theorem 6.3.1, because f ′(x) fails to exist in any deleted
neighborhood of 0. In fact, f ′(x) does not exist at any point x other than 0, since f is not
even continuous at any point other than 0.

10. (d) Note that for x 6= 0,
1

x
− 1

arctanx
=

arctanx− x
x arctanx

.

We apply L’Hopital’s rule to compute its limit as x→ 0. First, we check that both

lim
x→0

(arctanx− x) = 0, and lim
x→0

x arctanx = 0.

Next, both arctanx − x and x arctanx are differentiable on a deleted neighborhood
of 0, and their derivatives are

d

dx
(arctanx− x) =

1

1 + x2
− 1,

d

dx
(x arctanx) =

x

1 + x2
+ arctanx.

We claim that

lim
x→0

1
1+x2

− 1
x

1+x2
+ arctanx

exists and equals 0;

then by L’Hopital’s rule, the given limit

lim
x→0

(
1

x
− 1

arctanx

)
also exists and equals 0.

To check the claim, we use L’Hopital’s rule again: we check that

lim
x→0

(
1

1 + x2
− 1

)
= 0, and lim

x→0

(
x

1 + x2
+ arctanx

)
= 0.

Also, both the numerator and denominator are differentiable on a deleted neighbor-
hood of 0, and their derivatives are

d

dx

(
1

1 + x2
− 1

)
= − 2x

(1 + x2)2
,
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d

dx

(
x

1 + x2
+ arctanx

)
=

2

1 + x2
− 2x2

(1 + x2)2
=

2

(1 + x2)2
.

Thus
d
dx

(
1

1+x2
− 1
)

d
dx

(
x

1+x2
+ arctanx

) = −x,

and it converges to 0 as x→ 0. Hence by L’Hopital’s rule,

lim
x→0

1
1+x2

− 1
x

1+x2
+ arctanx

exists and equals 0,

as we have claimed.

11. (c) Note that xsinx = esinx lnx for x > 0. We claim that limx→0+ sinx lnx exists and
equals 0. Then by continuity of exp at 0, we see that

lim
x→0+

xsinx exists, and is equal to e0 = 1.

Now we prove the claim. To do so, note that for x > 0,

sinx lnx =
lnx

cscx
.

We compute its limit as x→ 0+ using L’Hopital’s rule: first we check

lim
x→0+

lnx = −∞, lim
x→0+

cscx = +∞.

(Technically we only need the limit of the denominator here, but it’s a good habit to
also check the limit of the numerator to see that it is ∞/∞, because otherwise one
usually does not need to evaluate that limit by L’Hopital’s rule.) Also, both lnx and
cscx are differentiable on (0, π), with

d

dx
lnx =

1

x
,

d

dx
cscx = − cot2 x.

So our claim will follow from L’Hopital’s rule, if we can show

lim
x→0+

1
x

− cot2 x
exists and equals 0.

But the latter is easy to see:

1
x

− cot2 x
= − sin2 x

x cos2 x
= −sinx

x

sinx

cos2 x

for x 6= 0. As x→ 0+,
sinx

x
→ 1,

sinx

cos2 x
→ 0,

so

lim
x→0+

1
x

− cot2 x
exists, and equals 1 · 0 = 0.
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12. Note f(x) =
exf(x)

ex
, and since f and x 7→ ex is differentiable on (0,+∞), x 7→ exf(x)

is differentiable on (0,+∞). Moreover, lim
x→+∞

ex = +∞. By L’Hôpital rule II (Theorem

6.3.5), we have

lim
x→+∞

f(x) = lim
x→+∞

exf(x)

ex
= lim

x→+∞

exf(x) + exf ′(x)

ex
= lim

x→+∞
(f(x) + f ′(x)) = L.

Hence, lim
x→+∞

f ′(x) = lim
x→+∞

(f(x) + f ′(x))− lim
x→+∞

f(x) = L− L = 0.

Section 6.4

16. We compute lim
h→0

f(a+ h)− 2f(a) + f(a− h)

h2
using L’Hopital’s rule.

First, we check that

lim
h→0

f(a+ h)− 2f(a) + f(a− h) = 0 and lim
h→0

h2 = 0.

(The first limit follows from continuity of f at a, which follows since f is differentiable at
a.) Next, we note that both f(a+h)−2f(a) +f(a−h) and h2 are differentiable functions
of h, with

d

dh
(f(a+ h)− 2f(a) + f(a− h)) = f ′(a+ h)− f ′(a− h)

and
d

dh
h2 = 2h.

Since
f ′(a+ h)− f ′(a− h)

2h
=
f ′(a+ h)− f ′(a)

2h
+
f ′(a)− f ′(a− h)

2h
,

which converges to f ′′(a)
2 + f ′′(a)

2 = f ′′(a) as h→ 0 (the limit here follows since f ′′(a) exist),
we then have, from L’Hopital’s rule, that

lim
h→0

f(a+ h)− 2f(a) + f(a− h)

h2
exists, and equals f ′′(a).

Observation After putting a = 0, any odd function makes the limit exist and equal to
0.

e.g. Take f(x) := sgn x. Hence f ′′(0) doesn’t exist. But

lim
h→0

f(0 + h)− 2f(0) + f(0− h)

h2
= lim

h→0

1− 2(0)− 1

h2
= 0.

18. By Taylor theorem, ∃ ξ, η between x and c s.t.

f(x) = f(c) + f ′(c)(x− c) + · · ·+ f (n)(ξ)

n!
(x− c)n =

f (n)(ξ)

n!
(x− c)n

g(x) = g(c) + g′(c)(x− c) + · · ·+ g(n)(η)

n!
(x− c)n =

g(n)(η)

n!
(x− c)n

Since f (n) is continuous on I, lim
x→c

f (n)(ξ) = lim
ξ→c

f (n)(ξ) = f (n)(c).

Similarly, lim
x→c

g(n)(η) = g(n)(c). Hence, lim
x→c

f(x)

g(x)
= lim

x→c

f (n)(ξ)

g(n)(η)
=
f (n)(c)

g(n)(c)
.
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Supplementary Exercise

1. Define g(x) =
f(x)

x
, then g is differentiable on (0,∞). Since f is continuous on [0,∞),

differentiable on (0,∞) with f(0) = 0, we have, by Mean Value Theorem, ∃ ξ ∈ (0,∞)
such that

f(x)

x
=
f(x)− f(0)

x− 0
= f ′(ξ) < f ′(x).

If x > 0

g′(x) =
xf ′(x)− f(x)

x2
=
f ′(x)

x
− f(x)

x2
=

1

x

(
f ′(x)− f(x)

x

)
> 0

Hence g is strictly increasing on (0,∞), i.e.
f(x)

x
<
f(y)

y
if 0 < x < y.

2. Define

H(x) := det

 f(a) g(a) h(a)
f(b) g(b) h(b)
f(x) g(x) h(x)


Since f, g, h is continuous in [a, b] and differentiable in (a, b), then H(x) is continuous
in [a, b] and differentiable in (a, b). Obviously, H(a) = H(b) = 0. By Rolle’s theorem,
∃ c ∈ (a, b) s.t. H ′(c) = 0.

Method 1 − Differentiation Formula of Determinant

H ′(x) = det

 (f(a))′ (g(a))′ (h(a))′

f(b) g(b) h(b)
f(x) g(x) h(x)

+ det

 f(a) g(a) h(a)
(f(b))′ (g(b))′ (h(b))′

f(x) g(x) h(x)


+ det

 f(a) g(a) h(a)
f(b) g(b) h(b)
f ′(x) g′(x) h′(x)


= det

 0 0 0
f(b) g(b) h(b)
f(x) g(x) h(x)

+ det

 f(a) g(a) h(a)
0 0 0

f(x) g(x) h(x)

+ det

 f(a) g(a) h(a)
f(b) g(b) h(b)
f ′(x) g′(x) h′(x)


= det

 f(a) g(a) h(a)
f(b) g(b) h(b)
f ′(x) g′(x) h′(x)


Method 2 − Direct Observation

H(x) = det

(
g(a) h(a)
g(b) h(b)

)
f(x)− det

(
f(a) h(a)
f(b) h(b)

)
g(x) + det

(
f(a) g(a)
f(b) g(b)

)
h(x)

H ′(x) = det

(
g(a) h(a)
g(b) h(b)

)
f ′(x)− det

(
f(a) h(a)
f(b) h(b)

)
g′(x) + det

(
f(a) g(a)
f(b) g(b)

)
h′(x)

= det

 f(a) g(a) h(a)
f(b) g(b) h(b)
f ′(x) g′(x) h′(x)


We conclude that

det

 f(a) g(a) h(a)
f(b) g(b) h(b)
f ′(c) g′(c) h′(c)

 = H ′(c) = 0.
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3. The solution is wrong, since in applying the L’Hopital’s rule, one has to first show that

lim
x→a

f ′(x)

g′(x)

exists. If this limit does not exist, then one can conclude nothing about

lim
x→a

f(x)

g(x)

from the L’Hopital’s rule.

The correct solution is as follows: Note that for x 6= 0,

x2 sin 1
x

sinx
=

x

sinx
· x sin

1

x
,

Also,

lim
x→0

x

sinx
exists, and equals 1,

lim
x→0

x sin
1

x
exists, and equals 0

(this last limit follows from Sandwich theorem, since −|x| ≤ x sin 1
x ≤ |x| for all x 6= 0,

and limx→0−|x| = limx→0 |x| = 0). So we get

lim
x→0

x2 sin 1
x

sinx
exists, and equals 1 · 0 = 0.


