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Solution 10

Section 9.1

2. Denote by

∞∑
n=1

an a conditionally convergent series, a+n := max{an, 0}, a−n := max{−an, 0}.

Then we have | an | = a+n + a−n , an = a+n − a−n .

Now
∑
an≥0

an =
∞∑
n=1

a+n ,
∑
an<0

an = −
∞∑
n=1

a−n . Then ∀ N ,
N∑
n=1

a+n +
N∑
n=1

a−n =
N∑
n=1

| an |. As-

sume
∑

a+n ,
∑

a−n <∞, then
∞∑
n=1

| an | =
∞∑
n=1

a+n +
∞∑
n=1

a−n <∞, which is contradiction.

Hence, if

∞∑
n=1

a+n <∞, then

∞∑
n=1

a−n =∞, but since

∞∑
n=1

an <∞, then

∞∑
n=1

a−n = lim

N∑
n=1

a−n = lim

N∑
n=1

(a+n − an) =

∞∑
n=1

a+n −
∞∑
n=1

an <∞,

which is contradiction. Similarly, it is impossible to have

∞∑
n=1

a−n <∞.

Together,
∑
an≥0

an =
∞∑
n=1

a+n =∞,
∑
an<0

an = −
∞∑
n=1

a−n = −∞.

3. Since
∑

an converges conditionally,
∑
an≥0

an =∞,
∑
an<0

an = −∞ and an → 0.

Hence ∃ K s.t. | an | < 1/2, ∀ n ≥ K.

¿From { an : an ≥ 0 }, it is possible to pick b1, b2, . . ., bn1 s.t.

n1∑
n=1

bn > 1.

Then, from { an : an < 0 }, pick bn1+1, bn1+2, . . ., bn2 s.t. 0 <

n2∑
n=1

bn ≤ 1.

Next, from { an : an ≥ 0 }\{ b1, b2, . . . , bn1 }, pick bn2+1, bn2+2, . . ., bn3 s.t.

n3∑
n=1

bn > 2.

Then, from { an : an < 0 }\{ b1, b2, . . . , bn2 }, pick bn3+1, bn3+2, . . ., bn4 s.t. 1 <

n4∑
n=1

bn ≤ 2.

Continuing this process, every terms in an’s will eventually be picked and hence we obtain

a rearrangement ( bn ) s.t. ∀ k, ∃ N ∈ N s.t.

N∑
n=1

bn > k. Hence
∑

bn diverges to ∞.
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7. (a)

N∑
n=1

| anbn | ≤M
N∑
n=1

| an | ≤M
∞∑
n=1

| an |, where | bn | ≤M, ∀ n.

Let N →∞,
∞∑
n=1

| anbn | ≤M
∞∑
n=1

| an | <∞, hence
∑

anbn converges absolutely.

(b) Take an :=
(−1)n

n
, bn := (−1)n, then anbn =

1

n
⇒

∑
anbn =

∑ 1

n
diverges.

8. Take an :=
(−1)n√

n
⇒

∑
an =

∑ (−1)n√
n

converges by alternating series test (Theorem

9.3.2). But
∑

a2n =
∑ 1

n
diverges.

Remark It can also be used to answer the question: Give an example of two convergent

serieses
∑

an,
∑

bn such that
∑

anbn diverges.

9. Denote sn :=
n∑
k=1

ak. Then, for n ∈ N, s2n − sn ≥ na2n =
1

2
(2n)a2n > 0, and

s2n+1 − sn ≥ (n+ 1)a2n ≥
1

2
(2n+ 1)a2n+1 > 0.

Let n→∞, lim(2n)a2n = 0, lim(2n+ 1)a2n+1 = 0 ⇒ limnan = 0.

10. Take an :=
1

n lnn
, by Cauchy condensation test (by question 12 in Section 3.7 p.95),∑

an =
∑ 1

n lnn
diverges. Hence limnan = limn

(
1

n lnn

)
= lim

1

lnn
= 0.

13. (a)

√
n+ 1−

√
n√

n
=

1
√
n(
√
n+ 1 +

√
n)

>
1

2(n+ 1)

Since Harmonic series is divergent, so
∑∞

n=1(

√
n+ 1−

√
n√

n
) is also divergent.

(b)

√
n+ 1−

√
n

n
=

1

n(
√
n+ 1 +

√
n)

<
1

2n1.5
.

Since
∑∞

n=1 1/over2n1.5 is convergent, so
∑∞

n=1(

√
n+ 1−

√
n

n
) is also convergent.

15. First we assume (i) is correct. Note that ∀M ∈ N, let i′ = max {i|aij = ck, k = 1, . . . ,M}.
Then we have,

M∑
k=1

ck ≤
i′∑
i=1

Ai ≤ B

That means
∑M

k=1 ck is upper bounded, hence (ii) holds.
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Then assuming (ii) is correct. We want to prove Ai exists first, then applying similar
technique to

∑∞
i=1Ai. Because

∑N
j=1 aij is sum of subset of enumeration, hence

N∑
j=1

aij ≤
∞∑
k=1

≤ C

That means Ai exists. So ∀ε and i, ∃N(i, ε) such that ∀n > N(i, ε),
∑n

j=1 aij > Ai − ε
2i

.
So, ∀M ∈ N,

M∑
i=1

N(i,ε)∑
j=1

aij >
M∑
i=1

Ai − ε

Note that the left part of the equation is less than C. Let ε→ 0 we have

M∑
i=1

Ai ≤ C

So (i) holds.
Let M →∞ in the proof above, we have B ≥ C and C ≥ B. That is B = C.



2014-15 Second Term MAT2060B 4

Section 9.2

1. (a) Method 1

Denote xn :=
1

(n+ 1)(n+ 2)
. Then

∣∣∣∣ xn+1

xn

∣∣∣∣ =
n+ 1

n+ 3
= 1− 2

n+ 3

Hence limn

(
1−

∣∣∣∣ xn+1

xn

∣∣∣∣) = lim
2

1 + 3/n
= 2 > 1.

By Raabe’s test,
∑

xn converges absolutely.

Method 2

Now xn :=
1

(n+ 1)(n+ 2)
≤ 1

n2
. Since

∑ 1

n2
<∞, by Comparison test,∑

xn converges absolutely since each xn is positive.

(c) Since lim 2−1/n = 20 = 1 6= 0. By nth term test,
∑

2−1/n diverges.

2. (b) Now xn :=
(
n2(n+ 1)

)−1/2 ≤ n−3/2. Since
∑ 1

n3/2
<∞, by Comparison test,∑

xn converges.

(c) xn =
n!

nn
=
n(n− 1) · · · 21

nn · · ·nn
≤ 2

n2
. Therefore by comparison test, the series diverges.

(d) Denote xn := (−1)n
n

n+ 1
. Then limx2n = 1 and limx2n−1 = −1. By nth term test,∑

xn diverges.

3. (b) Now lim
x→∞

xe
x

e2x
= lim

x→∞
ee

x lnx−2x ≥ lim
x→∞

e(1+x) lnx−2x ≥ lim
x→∞

elnx+x(lnx−2) =∞.

By sequential criterion, lim
n→∞

(lnn)n

n2
=∞ ⇒ ∃ K s.t.

(lnn)n

n2
> 1, for n ≥ K.

Hence, for n ≥ K, (lnn)−n <
1

n2
. Since

∞∑
n=K

1

n2
<∞, by Comparison test,

∑
(lnn)−n

converges (absolutely) (for sufficiently large n).

(d) Now lim
x→∞

(ex)x

eex
= lim

x→∞

ex
2

eex
= lim

x→∞
ex

2−ex .

By Taylor theorem, for x ≥ 3, ex ≥ x+
x2

2
+
x3

3!
≥ x+

x2

2
+
x2 · 3

3!
= x+ x2.

Hence, lim
x→∞

(ex)x

eex
= lim

x→∞
ex

2−ex ≤ lim
x→∞

ex
2−(x+x2) = lim

x→∞
e−x = 0.

By sequential criterion, lim
n→∞

(lnn)ln lnn

n
= 0 ⇒ ∃ K s.t.

(lnn)ln lnn

n
< 1, for n ≥ K.

Hence, for n ≥ K, (lnn)− ln lnn >
1

n
. Since

∞∑
n=K

1

n
diverges,
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by Comparison test,
∑

(lnn)− ln lnn diverges (for sufficiently large n).

Remark Basically what we did above is to try to compare the tail of sequence by ( 1/n2 )
if we want to show convergence, and by ( 1/n ) if we want to show divergence instead.

However, it is difficult to prove the divergence of
∑ 1

n lnn
by the method as mentioned

above, because it is too ugly that
1

n2
≤ 1

n lnn
≤ 1

n
for large n.

4. (b) Denote xn := nne−n. Then

∣∣∣∣ xn+1

xn

∣∣∣∣ =
n+ 1

e

(
1 +

1

n

)n
≥ 2(n+ 1)

e
→∞.

By ratio test,
∑

xn diverges.

(d) Now lim
x→∞

ee
x/2
/x

e2x
= lim

x→∞

ee
x/2−2x

x
.

By Taylor theorem, for x ≥ 10, ex/2 ≥ (x/2) +
(x/2)2

2!
+ · · ·+ (x/2)5

5!
≥ 5x

2
.

Hence, lim
x→∞

ee
x/2
/x

e2x
= lim

x→∞

ee
x/2−2x

x
≥ lim

x→∞

ex/2

x
= lim

x→∞

ex/2/2

1
=∞.

By sequential criterion, lim
n→∞

e
√
n/ lnn

n2
=∞ ⇒ ∃ K s.t.

e
√
n/ lnn

n2
> 1, for n ≥ K.

Hence, for n ≥ K, (lnn)e−
√
n <

1

n2
. Since

∞∑
n=K

1

n2
<∞,

by Comparison test,
∑

(lnn)e−
√
n converges (absolutely) (for sufficiently large n).

6. Define f(x) := (ax+ b)−p. Then f ′(x) := −ap(ax+ b)−p−1 < 0, for x ≥ 1. Moreover,∫ R

1
f =

∫ R

1

dx

(ax+ b)p
=


(ax+ b)1−p

a(1− p)

∣∣∣∣R
1

, for p 6= 1

ln(ax+ b)
∣∣R
1
, for p = 1

=


1

a(1− p)

(
1

(aR+ b)p−1
− 1

(a+ b)p−1

)
, for p 6= 1

ln(aR+ b)− ln(a+ b), for p = 1

If p > 1, then lim
R→∞

∫ R

1
f =

(a+ b)1−p

a(p− 1)
, by integral test,

∑
(an+ b)−p <∞.

If p ≤ 1, then

∫ R

1
f diverges as R→∞, by integral test,

∑
(an+ b)−p diverges.

7. (a) Denote xn :=
n!

3 · 5 · 7 · · · (2n+ 1)
. Then

∣∣∣∣ xn+1

xn

∣∣∣∣ =
n+ 1

2n+ 3
→ 1

2
< 1.

By ratio test,
∑

xn converges absolutely.
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8. Note that this series is a rearrangement of a, a2, . . . , an−1, an, . . . , which we already know
is absolutely convergent.
Root test:

|xn|1/n =

{
a(n−1)/n, n = 2k;

an/(n−1), n = 2k-1.

In both cases |xn|1/n < 1. By root test, the infinite series is convergent.
Ratio test:

xn+1

xn
= 1/a > 1 ∀n = 2k + 1, k ∈ N

and
xn+1

xn
= a2 < 1 ∀n = 2k, k ∈ N

We can’t use ratio test to judge if this series is convergent.

15. cn+1 − cn =
1

n+ 1
− (ln(n+ 1)− lnn) =

1

n+ 1
− 1

ξ
< 0, for some ξ ∈ (n, n+1), by MVT.

Hence ( cn ) is a decreasing sequence. Now we know∫ k+1

k

dx

x
<

1

k
⇒ lnn =

∫ n

1

dx

x
<

n−1∑
k=1

1

k
< 1 +

1

2
+ · · ·+ 1

n
⇒ cn > 0.

Hence ( cn ) is bounded from below by 0, C := lim cn exists. Now we have

bn = c2n − cn + ln 2 ⇒ lim bn = C − C + ln 2 = ln 2.

16. Group the terms according to the # of digits in the denominators, hence the partial sum

sn ≤
(

1

1
+ · · ·+ 1

9

)
︸ ︷︷ ︸

no 1/6

+

(
1

10
+

1

11
+ · · ·+ 1

99

)
︸ ︷︷ ︸

no terms with digit 6

+ · · ·+
(

1

10 · · · 0︸ ︷︷ ︸
N digits

+ · · ·+ 1

99 · · · 9︸ ︷︷ ︸
N digits

)
︸ ︷︷ ︸

no terms with digit 6

where n is an N -digit natural number.

For a k-digit natural number without a digit 6, there are 8 choices for the 1st digit and 9
choices for the other (k − 1) digits.

Hence # of k-digit natural numbers without a digit 6 = 8× 9k−1.

sn ≤
(

1

1
+ · · ·+ 1

1

)
︸ ︷︷ ︸

8 terms

+

(
1

10
+

1

10
+ · · ·+ 1

10

)
︸ ︷︷ ︸

8×9 terms

+ · · ·+
(

1

10N−1
+ · · ·+ 1

10N−1

)
︸ ︷︷ ︸

8×9N−1 terms

= 8 + 8×
(

9

10

)
+ · · ·+ 8×

(
9

10

)N−1
<

8

1− 9/10
= 80.

Since ( sn ) is increasing and bounded above by 80, then
∑ 1

nk
converges to a limit < 80.†

Now mk = 10k − 4, for k ∈ N.

∞∑
k=1

1

mk
=

∞∑
k=1

1

10k − 4
≥ 1

10

∞∑
k=1

1

k
diverges.

Now { pk } is the collection of numbers not ended in 6, hence it contains a subcollection of
numbers ended in 1, namely pkj := 10j + 1. Then
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∞∑
k=1

1

pk
≥
∞∑
j=1

1

pkj
=
∞∑
j=1

1

10j + 1
≥
∞∑
j=1

1

10j + j
=

1

11

∞∑
j=1

1

j
diverges.

Remark We can get the same result if 6 is replaced by a fixed digit among 1, 2, . . . , 9.
If 6 is replaced by 0, we can get the bound 90 instead of 80.

19. We adopt the notation in the question. Since b1 =
√
A −

√
A1 and bn =

√
A−An−1 −√

A−An > 0,
N∑
k=1

bk =
√
A−

√
A−AN →

√
A as N →∞.

Hence the series converges. Now, we check that limn→∞
an
bn

= 0. For n > 1,

bn =
√
A−An−1 −

√
A−An =

An −An−1√
A−An−1 +

√
A−An

=
an√

A−An−1 +
√
A−An

.

Using the fact that limn→∞An = A, we conclude that

an
bn

=
√
A−An−1 +

√
A−An → 0 as n→∞.

20. Let bn = an/
√
An where An is the nth partial sum of

∑
an. It is clear that

lim (bn/an) = lim 1/
√
An = 0

since
∑
an is divergent. Now we prove

∑
bn is also divergent.

∑
bn ≥

M∑
n=1

bn ≥
M∑
n=1

an/
√
AM =

√
AM ∀M ∈ N

Letting M →∞, we have the desired conclusion.

Section 9.3

1. (b) Denote xn :=
1

n+ 1
> 0. Note xn+1 − xn =

−1

n(n+ 1)
< 0, i.e. (xn ) is decreasing

and limxn = lim
1

n+ 1
= 0. By Leibniz Test (alternating series test),

∞∑
n=1

(−1)n+1

n+ 1
<∞.

∞∑
n=1

∣∣ (−1)n+1xn
∣∣ =

∞∑
n=1

∣∣∣∣ (−1)n+1

n+ 1

∣∣∣∣ =
∞∑
n=1

1

n+ 1
≥ 1

2

∞∑
n=1

1

n
diverges.

Hence it converges conditionally.

(d) Denote xn :=
lnn

n
. Define f(x) :=

x

ex
. Then f ′(x) =

ex − xex

e2x
=

1− x
ex

< 0 if x > 1.

Hence f is decreasing if x > 1. By L’Hopital’s rule, lim
x→∞

f(x) = lim
x→∞

1

ex
= 0.
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By sequential criterion, limxn = lim f(lnn) = 0 and ∀ n ≥ 3, xn > 0 and

xn+1 = f(ln(n+ 1)) < f(lnn) = xn.

By Leibniz Test (alternating series test),

∞∑
n=1

(−1)n+1 lnn

n
<∞.

∞∑
n=1

∣∣ (−1)n+1xn
∣∣ =

∞∑
n=1

∣∣∣∣ (−1)n+1 lnn

n

∣∣∣∣ =

∞∑
n=1

lnn

n
≥
∞∑
n=3

1

n
diverges.

Hence it converges conditionally.

2. Now s2(n+1) − s2n = z2n+1 − z2n+2 ≥ 0, and s2n+1 − s2n−1 = −(z2n − z2n+1) ≤ 0,

s2n − s2n−1 = −z2n ≤ 0, i.e. s2n ≤ s2n−1, ∀ n ∈ N.

Together, s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ s2n−1 ≤ · · · ≤ s5 ≤ s3 ≤ s1.
Hence s lies between sn and sn+1, so | s− sn | ≤ | sn+1 − sn | ≤ zn+1.

8. (a) Denote xn :=
nn

(n+ 1)n+1
=

1

(1 + 1/n)n
· 1

n+ 1
. Since n 7→

(
1 +

1

n

)n
is increasing,

xn+1 =
1

(1 + 1/(n+ 1))n+1 ·
1

n+ 2
≤ 1

(1 + 1/n)n
· 1

n+ 1
= xn.

Now limxn = lim
1

(1 + 1/n)n
· 1

n+ 1
=

1

e
· 0 = 0.

By Leibniz Test (alternating series test),
∑

(−1)n
nn

(n+ 1)n+1
converges.

(c) Now lim

∣∣∣∣ (−1)n
(n+ 1)n

nn

∣∣∣∣ = e 6= 0. By nth term test,
∑

(−1)n
(n+ 1)n

nn
diverges.

Supplementary Exercises

1. (a) Since
∑

k=1 log ak converges, we have by n-th term test, limk→∞ log ak = 0. Therefore
by continuity of ex

1 = elimk→∞ log ak = lim
k→∞

elog ak = lim
k→∞

ak.

(b) The first inequality follows from

n∏
k=1

(1 + pk) = 1 +
n∑
k=1

pk +
n∑

m=2

∑
1≤i1<i2<···<im≤n

pi1pi2 · · · pim ≥
n∑
k=1

pk.

For the second one, we observe that

epk =

∞∑
j=2

(pk)
j

j!
+ 1 + pk ≥ 1 + pk.

Hence,
∏∞
k=1(1 + pk) is convergent implies that

∑n
k=1 pk is bounded above, so the

series converges. Now if
∑∞

k=1 pk converges, then

0 ≤
n∑
k=1

log(1 + pk) ≤
n∑
k=1

pk ≤
∞∑
k=1

pk <∞,

therefore
∑∞

k=1 log(1 + pk) is convergent.
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2. (a) Now We shall follow the hint given in the question. Let a > 1

1

2a

∑
k=1

1

ka
=
∑
k=1

1

(2k)a

and therefore (
1− 1

2a
)∑
k=1

1

ka
=
∑
k=1

1

(2k − 1)a
= 1 +

1

3a
+

1

5a
+ · · · .

Similarly (
1− 1

2a
)(

1− 1

3a
)∑
k=1

1

ka
=

∑
2-k and 3-k

1

ka

and (
1− 1

2a
)(

1− 1

3a
)(

1− 1

5a
)∑
k=1

1

ka
=

∑
2-k,3-k and 5-k

1

ka
.

Since every integer ≥ 2 is either a prime or product of primes. We have let N be any
large integer > 2 ∏

p<N

(
1− 1

pa
)∑
k=1

1

ka
= 1 +

∑
k>1,p-k,∀p<N

1

ka
.

Hence ∣∣∣ ∏
p<N

(
1− 1

pa
)∑
k=1

1

ka
− 1
∣∣∣ ≤∑

k=N

1

ka

where RHS → 0 as N →∞. Result follows.

(b) Method 1, suppose there are finitely many prime, say p1, · · · , pN ≥ 2, then RHS of
the identity in 2a) defines a continuous function f on [1,∞), which is given by

f(a) =
1∏

p

(
1− 1

pa

) .
In particular, it is bounded on [1,2]. However, by integral test and 2a), we conclude
that for a < 2

f(a) =
∑
k=1

1

ka
≥ 1 +

∫ ∞
2

1

ta
dt = 1 +

21−a

a− 1
≥ 1

2(a− 1)
,

which is unbounded on (1, 2]. Contradiction.
Method 2, suppose there are finitely many prime, say p1, · · · , pN . We consider the
following integer

k :=
N∏
n=1

pn + 1.

Every integer ≥ 2 is either a prime or product of primes. Now k ≥ 2 is not divisible
by pi for all i ≤ N and therefore is a prime 6= pi, ∀i, which is impossible.


