Suggested solutions to HW4 for MATH3270a

Rong ZHANG*

December 7, 2018

1. (3points) If 1 = y and 25 = ¢/, and we consider the second order equation
y" +pt)y +a(t)y =0
corresponding to the system of 1% order equations

/
€T1 = T2,

= —q(t)z1 — p(t)za.

o~

x

(a) (2points) Let X be a fundamental matrix for above system and y;,y2 be a fundamental
set of solutions for above second order equation, show that we must have Wy, yo](t) =
cdet(X (t)) for some non-zero constant c.

(b) (1point) If p,q are constants, by writing the above system as % = Ax for some 2 x 2

constant matrix, show that the characteristic polyminial of A agrees with the characteristic
polynomial of the second order equation.

Solution:

(a) Ify1,ys are a fundamental set of solutions for above second order equation, then (i}) , <§?>
1 2

are a fundamental set of solutions for above system. Thus there exists some constant matrix

C such that
Yy Y2
=Xt)C
(yi yé) Q

then we have
0 # Wy1,y2(t) = det(X(t)) det(C).
Let ¢ = det C, which cannot be zero since det X # 0, so we finish the proof.

1 .. C e
0 >, so the characteristic polynomial is given by f(r) = r(r +p) +q =

(b) Here A = (_q -

r2 4+ pr+q.

2. (4points) We consider the system

dy (-1 -1\,
dt  \—a -1 Y

(a) (1point) Solve the above system for o = 1 and classify the critical 0 of the system as to

2
type and stability;
(b) (1point) Repeat part (a) for a = 2;

*Any questions on solutions of HW4, please email me at rzhang@math.cuhk.edu.hk



—a -1
(1point) the value of a between % and 2 where the transition from one behaviour to other
occurs.

(¢c) Find (1point) the eigenvalues of the matrix ( > in terms of «, and determine

Solution:

a) The eigenvalues of 7} -1 are A = —1 4+ ¥2 < 0, then critical point 0 is a node and
1 2
-1 -

asymptotically stable.

(b) The eigenvalues of :1 :i) are \] = —1—+v/2 <0, s = —14++/2 > 0, then critical point

0 is a saddle point and unstable.
-1 -1

(c) The eigenvalues of <—a _1

)are)\lz—l—\/&<0,)\2:—1+\/& Hence oo =1 is the

critical point.

3. (8points=2points x 4) Find the real-valued general solution to the following system of linear
differential equations:

@ %= (2 %) (5)

-3 0 2
b) %=1 -1 0]y
—2 -1 0
1 -1 4
(0 F=13 2 -1y
2 1 -1
5 -3 -2
d) W=|(8 —5 —4]|y
—4 3 3

Solution:

2
(a) The eigenvalue and corresponding eigenvector of matrix A = < 3 ) are

then the general solution to homogeneous equation is

_ 1 3
Yo = Cre" (_1) + Caet <_1>

with arbitrary constants C7, Cy. One particular solution is of the form
Y (t) = at + b+ ce' + dte*
with constant vectors @, l;, c, d to be determined. Then

dY - o o . t
—r = A+ (@ d)e + dic’ = At + Ab+ Ade' + Adie' + (et)



which implies that

Aa+(0):o,
1
Ab = @,
1 -
AG+ > =c+d,
0
Ad =d.

Then we have

= () =) = () = ()

Hence the general solution is given by

1 3 —3t ~1 3
~1 ~1 2t — 1 1 —1

-3 0 2
(b) The eigenvalue and corresponding eigenvector of matrix A= 1 -1 0] are
—2 —1 0
2
)\1 = —2, r = —2 s
1
21
Ao=—1—+2i, 1ry= -1 ,
V2i+1
21
A =142, ry= 1 ,
V2i—1
then the real-valued general solution is
2 V2 cos(ﬂt) V2 sin(ﬁt)
ye=Cre 2t | =2 | + Che™? sin(\@t) + Cget — cos(\/§t)
1 V2 cos(v/2t) — sin(v/2t) V2 sin(v/2t) + cos(v/2t)
with arbitrary constants Cq, Cy, Cs.
1 -1 4
(¢) The eigenvalue and corresponding eigenvector of matrix A= |3 2 —1] are
2 1 -1
1
)\1 = *2, T = —1 s
-1
-1

)‘2:17 T2 = 4 )
1




then the general solution is

1 -1 1
Ye=Cre 2t | =1 | +Coet | 4 | + Cse3t | 2
-1 1 1
with arbitrary constants C, Cs, Cs.
5 -3 -2
(d) The eigenvalue of matrix A= 8 —5 —4] is A = 1 with algebraic multiplicity 3 and
-4 3 3

geometric multiplicity 2, the corresponing eigenvectors and generalized eigenvector are

3 1 0
rm=14], r2=(0]), £&=10],
0 2 -1

then the general solution is

3 1 2 0
Yo = Clet 4 —|—Cg€t 0 +03€t{ 4 1t+1]1 0 }
0 2 -2 -1

with arbitrary constants C1, Cs, Cs.

4. (3points=1point x 3) Let A be a constant n x n matrix, and we consider the matrix valued
differential equation ®' = A®, with initial value ®(ty) = B for some invertible matrix B.
(a) Show that above initial value problem has a unique soluiton defining on R.
(b) Suppose ®(t) is the unique solution with initial data ®(0) = I, show that ®(¢)®(s) =
O(t+s).
(c) Show that ®(t)®(—t) = I and hence ®(t — s5) = ®(t)®(s) 1.

Solution:

(a) Let ®(t) = (¢1, P2, -+, dpn) with ¢;,4,1,2,---  n vectors, then for any ¢ € {1,2,--- ,n}

¢i(t) = Agy(t)

¢i(0) = b;
where B = (by,ba,--- ,by). Since A is a constant matrix, so the elements of A are continuous
on the whole R, then there exists a unique solution ¢; for each i by existence and uniqueness

of first order system of partial differential equation. Hence there exists a unique solution
O(t) = (¢1,¢2, -+, ¢pn) for above initial value problem on whole line R.

(b) Let s be a fixed point. Since ®(t)®(s) and ®(t + s) satisfy

' (t) = AD(t)
®(0) = (s)

then by uniqueness they are equal.

(c) Let s = —t in ®(t)P(s) = P(t + s), together with ®(0) = I, we get O(t)P(—t) = I
immediately, which implies that ®(—t) = ®(¢)~!, thus ®(t —s) = ®(t)®(—s) = ®(t)®(s) L.

5. (6points=2 points x 3) Sketch the phase portrait for each of the linear system of 15! order
differential equations:

(a) % = (_15 _13) Y;



Solution:

(a) First, the critical point of the system is (0, 0).

1 1
-5 -3
a spirial point.

Then the eigenvalues of matrix A = ( > are A = —1 £ . So the (0,0) is stable and

The phase portrait is shown in the following. (Note that the direction at point (1,1) is
(_ 8) , so the trajectory moves in clockwise direction to zero.)
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(b) First, the critical point of the system is (0, 0).

Then the eigenvalue and corresponding eigenvector of matrix A = (

] 1

- 47 2 = 1 I
so the point (0,0) is a node and stable.

The phase portrait is shown in the following (it should be noted that the eigenvector ro is
wrong in the picture, please correct it by yourself.).




(c) First, the critical point of the system is (0,0).
3 1

Then the eigenvalue of matrix A = <_ 4 _1> is A = 1 with algebraic multiplicity 2 and

geometric multiplicity 1, the corrsponding eigenvector and generalized eigenvector are

(L) e ().

so the point (0,0) is a node and unstable.
The phase portrait is shown in the following.
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6. (6points=3 points x 2) For each of the following nonlinear system of 1% order differential

equations:

e (1point) Find all critical points of the above system and the corresponding linear system

near each critical points;

e (1point) Determine the type and stability of the linear system associated to each critical

points;

e (1point) Draw the phase portrait for the nonlinear system of differential equations.

(a)

dy
_—= 3 —
o (3+y1)(y2 — y1),
dys
dt ( yl)(y? + y1)7
(b)
dyi
A 11—y —
dt yl( Y1 y2),
dy2
“Z = (2 — Y1 — o).
7 y2(2 —y1 — y2)

Solution:
(a) e Let F=3+y1)(y2—v1),G=(4—vy1)(y2 + y1), then by solving

F =0,
G =0,



we find all critical points Py = (0,0), P» = (—3,3), P3 = (4,4). Then

d(F,G) _<y2—2y1—3 3+y1>
4d—yo—2y1 44—

d(y1,y2)

so the correponding linear system near each critical point is given by

y = A(P)y

A(Pl):<_43 i) A(Pg):(g g) A(Pg):C; S)

e The ecigenvalues of A(P;) are \; = 1_5/97 <0,M = H'T‘/ﬁ > 0, so the critical point

P, = (0,0) is a saddle point and unstable. Moreover, the corresponding eigenvectors
are

where

) o )

The eigenvalues of A(Py) are A\; = 6,A2 = 7, so the critical point P» = (—3,3) is a
node and unstable. Moreover, the corresponding eigenvectors are

(3 o)

%5\/%’ so the critical point P3 = (4, 4) is a Spirial

The eigenvalues of A(Ps3) are A =
point and stable. Note that the direction at point (5,4) is <_470), so the trajectory

around P3 = (4,4) moves in clockwise direction to Ps.
e The phase portrait:

(b) e Let F=y1(1 —y1 —y2),G =y2(2 —y1 — y2), then by solving

F =0,
G =0,

we find all critical points Py = (0,0), P» = (0,2), P; = (1,0). Then

d(F,G) (1 —2y1 — o —y1 )
—Y2 2—y1 — 2y

d(yla y?)



so the correponding linear system near each critical point is given by

y = A(PR)y

ary=(y 5). am=(5 %) am= ().

e The eigenvalues of A(P;) are A\; = 1, Ay = 2, so the critical point P; = (0,0) is a node
and unstable. Moreover, the corresponding eigenvectors are

n=(o) =)

The eigenvalues of A(FP») are \; = —1, A2 = —2, so the critical point P» = (0,2) is a
node and stable. Moreover, the corresponding eigenvectors are

(o)

The eigenvalues of A(P3) are \; = —1, A2 = 1, so the critical point P3 = (1,0) is a
saddle point and unstable. Moreover, the corresponding eigenvectors are

() e (8)

where

e The phase portrait:

7. (4points=2 points x 2) Use Liapunov’s function to show the stability of the following system
of differential equations:

(a) For the system

dy: 14 2
—_ = —— 2

dt 2y1+ Y1Ys,
dys 3

22 =_9

dt y27

show that 0 is an asymptotically stable critical point.



(b)

For the system

dyr 3 3

dat = 2y] — Y5,

dys

— = 2u1vs + dyiys + 293,

show that 0 is an unstable critical point.

Solution:

(a)

Let
_ 2 2
V = ayy + byry2 + cys,

then

V = (2ayy + by2)y1 + (by1 + 2cy2) 52

1
= (2ay1 + by2)(—5y3 + 2y193) + (byr + 2cy2)(—2y3)

2
1
= —ay{ — byt + dayfys — dey}.

Ifa=c=1,b=0, then V = y} + y3 is positive definite and V= —yi + dydyd — dys =
—(y? — 2y3)? is negative semidefinite, thus 0 is a stable critical point.
Moreover, we can show that it’s indeed asymptotically stable. For the closed curve (circle

for this case) V = y? +y2 = ¢ > 0, since

> 0,y] # 2y

V=—(yi —215)° =
=0,y7 =2y

then the direction of the trajectory across this circle at y? # 2y32 is inward and if the
trajectory aross the circle at these discrete points where y§ = 2y3 (at most four points),
the direction is tagent to the circle. Hence, there exists a §p > 0 small enough, such that if
initial data is in the ball Bs,(0), then the trajectory must tend to the origin as time goes

to infinity.
Let
_ 2 2
V= ayi + byr1ys + cy3,

then

V = (2ay1 + by2)i1 + (by1 + 2cy2)2

= (2ay1 + by2) (203 — y3) + (by1 + 2cy2) (2y1v3 + 4ydys + 2u3)
= day? + 6byPys + 2(b + 4e)y2y2 + 2(b — a + 2¢)y1ys + (4e — b)yd.

If a = 2c = 2,b =0, then V = 2y? 4 3 is positive definite and V = 8y + 8yy3 + 4ys =
4(y? + y3)% + 4yt is also positive definite, thus 0 is a unstable critical point.



