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1. (3points) If x1 = y and x2 = y′, and we consider the second order equation

y′′ + p(t)y′ + q(t)y = 0

corresponding to the system of 1st order equations

x′1 = x2,

x′2 = −q(t)x1 − p(t)x2.

(a) (2points) Let X be a fundamental matrix for above system and y1, y2 be a fundamental
set of solutions for above second order equation, show that we must have W [y1, y2](t) =
cdet(X(t)) for some non-zero constant c.

(b) (1point) If p, q are constants, by writing the above system as dx
dt = Ax for some 2 × 2

constant matrix, show that the characteristic polyminial of A agrees with the characteristic
polynomial of the second order equation.

Solution:

(a) If y1, y2 are a fundamental set of solutions for above second order equation, then

(
y1
y′1

)
,

(
y2
y′2

)
are a fundamental set of solutions for above system. Thus there exists some constant matrix
C such that (

y1 y2
y′1 y′2

)
= X(t)C

then we have

0 6= W [y1, y2](t) = det(X(t)) det(C).

Let c = detC, which cannot be zero since detX 6= 0, so we finish the proof.

(b) Here A =

(
0 1
−q −p

)
, so the characteristic polynomial is given by f(r) = r(r + p) + q =

r2 + pr + q.

2. (4points) We consider the system

dy

dt
=

(
−1 −1
−α −1

)
y;

(a) (1point) Solve the above system for α = 1
2 and classify the critical 0 of the system as to

type and stability;

(b) (1point) Repeat part (a) for α = 2;

∗Any questions on solutions of HW4, please email me at rzhang@math.cuhk.edu.hk
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(c) Find (1point) the eigenvalues of the matrix

(
−1 −1
−α −1

)
in terms of α, and determine

(1point) the value of α between 1
2 and 2 where the transition from one behaviour to other

occurs.

Solution:

(a) The eigenvalues of

(
−1 −1
−1

2 −1

)
are λ = −1 ±

√
2
2 < 0, then critical point 0 is a node and

asymptotically stable.

(b) The eigenvalues of

(
−1 −1
−2 −1

)
are λ1 = −1−

√
2 < 0, λ2 = −1+

√
2 > 0, then critical point

0 is a saddle point and unstable.

(c) The eigenvalues of

(
−1 −1
−α −1

)
are λ1 = −1−

√
α < 0, λ2 = −1 +

√
α. Hence α = 1 is the

critical point.

3. (8points=2points × 4) Find the real-valued general solution to the following system of linear
differential equations:

(a) dy
dt =

(
2 3
−1 −2

)
y +

(
et

t

)
;

(b) dy
dt =

−3 0 2
1 −1 0
−2 −1 0

 y;

(c) dy
dt =

1 −1 4
3 2 −1
2 1 −1

 y;

(d) dy
dt =

 5 −3 −2
8 −5 −4
−4 3 3

 y;

Solution:

(a) The eigenvalue and corresponding eigenvector of matrix A =

(
2 3
−1 −2

)
are

λ1 = −1, r1 =

(
1
−1

)
λ2 = 1, r2 =

(
3
−1

)
,

then the general solution to homogeneous equation is

yc = C1e
−t
(

1
−1

)
+ C2e

t

(
3
−1

)
with arbitrary constants C1, C2. One particular solution is of the form

Y (t) = ~at+~b+ ~cet + ~dtet

with constant vectors ~a,~b,~c, ~d to be determined. Then

dY

dt
= ~a+ (~c+ ~d)et + ~dtet = A~at+A~b+A~cet +A~dtet +

(
et

t

)
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which implies that 

A~a+

(
0

1

)
= 0,

A~b = ~a,

A~c+

(
1

0

)
= ~c+ ~d,

A~d = ~d.

Then we have

~a =

(
−3
2

)
, ~b =

(
0
−1

)
, ~c =

(
−1

4
1
4

)
, ~d =

(
3
2
−1

2

)
.

Hence the general solution is given by

y = C1e
−t
(

1
−1

)
+ C2e

t

(
3
−1

)
+

(
−3t

2t− 1

)
+

(
−1

4
1
4

)
et +

(
3
2
−1

2

)
tet.

(b) The eigenvalue and corresponding eigenvector of matrix A =

−3 0 2
1 −1 0
−2 −1 0

 are

λ1 = −2, r1 =

 2
−2
1

 ,

λ2 = −1−
√

2i, r2 =

 √
2i
−1√
2i+ 1

 ,

λ3 = −1 +
√

2i, r2 =

 √
2i
1√

2i− 1

 ,

then the real-valued general solution is

yc = C1e
−2t

 2
−2
1

+ C2e
−t


√

2 cos(
√

2t)

sin(
√

2t)√
2 cos(

√
2t)− sin(

√
2t)

+ C3e
−t


√

2 sin(
√

2t)

− cos(
√

2t)√
2 sin(

√
2t) + cos(

√
2t)


with arbitrary constants C1, C2, C3.

(c) The eigenvalue and corresponding eigenvector of matrix A =

1 −1 4
3 2 −1
2 1 −1

 are

λ1 = −2, r1 =

 1
−1
−1

 ,

λ2 = 1, r2 =

−1
4
1

 ,

λ3 = 3, r2 =

1
2
1

 ,
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then the general solution is

yc = C1e
−2t

 1
−1
−1

+ C2e
t

−1
4
1

+ C3e
3t

1
2
1


with arbitrary constants C1, C2, C3.

(d) The eigenvalue of matrix A =

 5 −3 −2
8 −5 −4
−4 3 3

 is λ = 1 with algebraic multiplicity 3 and

geometric multiplicity 2, the corresponing eigenvectors and generalized eigenvector are

r1 =

3
4
0

 , r2 =

1
0
2

 , ξ =

 0
0
−1

 ,

then the general solution is

yc = C1e
t

3
4
0

+ C2e
t

1
0
2

+ C3e
t
{ 2

4
−2

 t+

 0
0
−1

}
with arbitrary constants C1, C2, C3.

4. (3points=1point × 3) Let A be a constant n× n matrix, and we consider the matrix valued
differential equation Φ′ = AΦ, with initial value Φ(t0) = B for some invertible matrix B.

(a) Show that above initial value problem has a unique soluiton defining on R.

(b) Suppose Φ(t) is the unique solution with initial data Φ(0) = I, show that Φ(t)Φ(s) =
Φ(t+ s).

(c) Show that Φ(t)Φ(−t) = I and hence Φ(t− s) = Φ(t)Φ(s)−1.

Solution:

(a) Let Φ(t) = (φ1, φ2, · · · , φn) with φi, i, 1, 2, · · · , n vectors, then for any i ∈ {1, 2, · · · , n}

φ′i(t) = Aφi(t)

φi(0) = bi

where B = (b1, b2, · · · , bn). Since A is a constant matrix, so the elements of A are continuous
on the whole R, then there exists a unique solution φi for each i by existence and uniqueness
of first order system of partial differential equation. Hence there exists a unique solution
Φ(t) = (φ1, φ2, · · · , φn) for above initial value problem on whole line R.

(b) Let s be a fixed point. Since Φ(t)Φ(s) and Φ(t+ s) satisfy

Φ′(t) = AΦ(t)

Φ(0) = Φ(s)

then by uniqueness they are equal.

(c) Let s = −t in Φ(t)Φ(s) = Φ(t + s), together with Φ(0) = I, we get Φ(t)Φ(−t) = I
immediately, which implies that Φ(−t) = Φ(t)−1, thus Φ(t−s) = Φ(t)Φ(−s) = Φ(t)Φ(s)−1.

5. (6points=2 points × 3) Sketch the phase portrait for each of the linear system of 1st order
differential equations:

(a) dy
dt =

(
1 1
−5 −3

)
y;
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(b) dy
dt =

(
−1 0
−1 −1

4

)
y;

(c) dy
dt =

(
3 1
−4 −1

)
y;

Solution:

(a) First, the critical point of the system is (0, 0).

Then the eigenvalues of matrix A =

(
1 1
−5 −3

)
are λ = −1± i. So the (0, 0) is stable and

a spirial point.

The phase portrait is shown in the following. (Note that the direction at point (1, 1) is(
2
−8

)
, so the trajectory moves in clockwise direction to zero.)

(b) First, the critical point of the system is (0, 0).

Then the eigenvalue and corresponding eigenvector of matrix A =

(
−1 0
−1 −1

4

)
are

λ1 = −1, r1 =

(
3
4

)
λ2 = −1

4
, r2 =

(
0
1

)
,

so the point (0, 0) is a node and stable.

The phase portrait is shown in the following (it should be noted that the eigenvector r2 is
wrong in the picture, please correct it by yourself.).
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(c) First, the critical point of the system is (0, 0).

Then the eigenvalue of matrix A =

(
3 1
−4 −1

)
is λ = 1 with algebraic multiplicity 2 and

geometric multiplicity 1, the corrsponding eigenvector and generalized eigenvector are

r =

(
1
−2

)
, ξ =

(
0
1

)
,

so the point (0, 0) is a node and unstable.

The phase portrait is shown in the following.

6. (6points=3 points × 2) For each of the following nonlinear system of 1st order differential
equations:

• (1point) Find all critical points of the above system and the corresponding linear system
near each critical points;

• (1point) Determine the type and stability of the linear system associated to each critical
points;

• (1point) Draw the phase portrait for the nonlinear system of differential equations.

(a)

dy1
dt

= (3 + y1)(y2 − y1),

dy2
dt

= (4− y1)(y2 + y1);

(b)

dy1
dt

= y1(1− y1 − y2),

dy2
dt

= y2(2− y1 − y2).

Solution:

(a) • Let F = (3 + y1)(y2 − y1), G = (4− y1)(y2 + y1), then by solving

F = 0,

G = 0,
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we find all critical points P1 = (0, 0), P2 = (−3, 3), P3 = (4, 4). Then

d(F,G)

d(y1, y2)
=

(
y2 − 2y1 − 3 3 + y1
4− y2 − 2y1 4− y1

)
so the correponding linear system near each critical point is given by

y′ = A(Pi)y

where

A(P1) =

(
−3 3
4 4

)
, A(P2) =

(
6 0
7 7

)
, A(P3) =

(
−7 7
−8 0

)
.

• The eigenvalues of A(P1) are λ1 = 1−
√
97

2 < 0, λ1 = 1+
√
97

2 > 0, so the critical point
P1 = (0, 0) is a saddle point and unstable. Moreover, the corresponding eigenvectors
are

r1 =

(
6

7−
√

97

)
, r2 =

(
6

7 +
√

97

)
.

The eigenvalues of A(P2) are λ1 = 6, λ2 = 7, so the critical point P2 = (−3, 3) is a
node and unstable. Moreover, the corresponding eigenvectors are

r1 =

(
1
−7

)
, r2 =

(
0
1

)
.

The eigenvalues of A(P3) are λ = −7±5
√
7i

2 , so the critical point P3 = (4, 4) is a spirial

point and stable. Note that the direction at point (5, 4) is

(
−7
−40

)
, so the trajectory

around P3 = (4, 4) moves in clockwise direction to P3.

• The phase portrait:

(b) • Let F = y1(1− y1 − y2), G = y2(2− y1 − y2), then by solving

F = 0,

G = 0,

we find all critical points P1 = (0, 0), P2 = (0, 2), P3 = (1, 0). Then

d(F,G)

d(y1, y2)
=

(
1− 2y1 − y2 −y1
−y2 2− y1 − 2y2

)
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so the correponding linear system near each critical point is given by

y′ = A(Pi)y

where

A(P1) =

(
1 0
0 2

)
, A(P2) =

(
−1 0
−2 −2

)
, A(P3) =

(
−1 −1
0 1

)
.

• The eigenvalues of A(P1) are λ1 = 1, λ2 = 2, so the critical point P1 = (0, 0) is a node
and unstable. Moreover, the corresponding eigenvectors are

r1 =

(
1
0

)
, r2 =

(
0
1

)
.

The eigenvalues of A(P2) are λ1 = −1, λ2 = −2, so the critical point P2 = (0, 2) is a
node and stable. Moreover, the corresponding eigenvectors are

r1 =

(
1
−2

)
, r2 =

(
0
1

)
.

The eigenvalues of A(P3) are λ1 = −1, λ2 = 1, so the critical point P3 = (1, 0) is a
saddle point and unstable. Moreover, the corresponding eigenvectors are

r1 =

(
1
0

)
, r2 =

(
1
−2

)
.

• The phase portrait:

7. (4points=2 points × 2) Use Liapunov’s function to show the stability of the following system
of differential equations:

(a) For the system

dy1
dt

= −1

2
y31 + 2y1y

2
2,

dy2
dt

= −2y32,

show that 0 is an asymptotically stable critical point.
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(b) For the system

dy1
dt

= 2y31 − y32,

dy2
dt

= 2y1y
2
2 + 4y21y2 + 2y32,

show that 0 is an unstable critical point.

Solution:

(a) Let

V = ay21 + by1y2 + cy22,

then

V̇ = (2ay1 + by2)ẏ1 + (by1 + 2cy2)ẏ2

= (2ay1 + by2)(−
1

2
y31 + 2y1y

2
2) + (by1 + 2cy2)(−2y32)

= −ay41 −
1

2
by31y2 + 4ay21y

2
2 − 4cy42.

If a = c = 1, b = 0, then V = y21 + y22 is positive definite and V̇ = −y41 + 4y21y
2
2 − 4y42 =

−(y21 − 2y22)2 is negative semidefinite, thus 0 is a stable critical point.

Moreover, we can show that it’s indeed asymptotically stable. For the closed curve (circle
for this case) V = y21 + y22 = c > 0, since

V̇ = −(y21 − 2y22)2 =

{
> 0, y21 6= 2y22
= 0, y21 = 2y22

then the direction of the trajectory across this circle at y21 6= 2y22 is inward and if the
trajectory aross the circle at these discrete points where y21 = 2y22 (at most four points),
the direction is tagent to the circle. Hence, there exists a δ0 > 0 small enough, such that if
initial data is in the ball Bδ0(0), then the trajectory must tend to the origin as time goes
to infinity.

(b) Let

V = ay21 + by1y2 + cy22,

then

V̇ = (2ay1 + by2)ẏ1 + (by1 + 2cy2)ẏ2

= (2ay1 + by2)(2y
3
1 − y32) + (by1 + 2cy2)(2y1y

2
2 + 4y21y2 + 2y32)

= 4ay41 + 6by31y2 + 2(b+ 4c)y21y
2
2 + 2(b− a+ 2c)y1y

3
2 + (4c− b)y42.

If a = 2c = 2, b = 0, then V = 2y21 + y22 is positive definite and V̇ = 8y41 + 8y21y
2
2 + 4y42 =

4(y21 + y22)2 + 4y41 is also positive definite, thus 0 is a unstable critical point.
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