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1. (4points=0.5points × 8) Solve the following initial-value problems:

(a) t4y′ + 5t3y = e−t, y(−1) = 0 for t < 0;

(b) y′ = y2

t , y(1) = 3;

(c) y + (2t− 3yey)y′ = 0, y(1) = 0;

(d) y′ = ty3(1 + t2)−1/2, y(0) = 1;

(e) y′ = y−4t
t−y , y(1) = 3 for t > 0;

(f) y′ = y − 2y2, y(1) = 0;

(f)’ y′ = y − 2y2, y(1) = 1;

(g) (3t2y + 2ty + y3) + (t2 + y2)y′ = 0, y(0) = 1;

(h) (t2 + 3ty + y2)− t2y′ = 0, y(1) = 0 for t > 0.

Solution:

(a) Multiplying the ODE by t gives

d

dt
(t5y) = te−t,

then integrating both sides we have

t5y =

∫ t

−1
se−sds

where we have used the initial condition y(−1) = 0. Thus the solution is given by for t < 0

y = − t+ 1

t5
e−t.

Remark: It’s noted that the maximal existence interval of the solution in this case is (0,∞) or
(−∞, 0), which together with initial condition y(−1) = 0 implies that the solution is unique only for
t < 0.

(b) This is a separable ODE. If y 6= 0, then rewrite the original ODE as

dy

y2
=
dt

t
.

It follows from direct integration that

−1

y
= ln |t|+ C

with constant C. Together with initial data y(1) = 3, we can obtain the following solution

y = − 3

3 ln t− 1
, 0 < t < e

1
3 .

Remark: By Existence and Uniqueness Theorem, this problem is uniquely solvable on some neigh-
borhood of (1, 3).

∗Any questions on solutions, please email me at rzhang@math.cuhk.edu.hk.
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(c) The unique solution is y ≡ 0. It’s trivial that 0 is a solution. In fact, we can show that the solution
is unique by the following two ways:

Method 1: If y 6= 0, rewrite ODE as

dt

dy
= −2

y
t+ 3ey

which is a 1st order linear ODE of t as a function of y, so the solution is given by

e
∫

2
y t = C +

∫
3eye

∫
2
y

that is,

ty2 = C + 3(y2 − 2y + 2)ey (1)

which together with initial data y(1) = 0 gives that

ty2 = −6 + 3(y2 − 2y + 2)ey.

However, by Implicit Function Theorem, we cannot get a function y(t) satisfying (1) and across the
point y(1) = 0.

Method 2: Rewrite the ODE as

y′ = − y

2t− 3yey
=: f(t, y),

then f(t, y) and fy(t, y) are continuous around some neighborhood of (1, 0), so it’s follows from
Existence and Uniqueness Theorem that y = 0 is the unique solution.

(d) This is a separable ODE, so rewrite as

dy

y3
=

tdt√
1 + t2

,

then integrating both sides yields

− 1

2y2
=

√
1 + t2 + C.

Then constant C is determined by y(0) = 1, so

y =
1√

3− 2
√

1 + t2

for −
√
5
2 < t <

√
5
2 .

(e) It’s noted that the source term f(y, t) = y−4t
t−y is homogeneous with t, y, that is, f(ky, kt) = f(y, t)

for any constant k, so we consider the new variable

z =
y

t
.

Then z′ = y′

t −
z
t or y′ = tz′ + z, so the original ODE becomes

tz′ + z =
z − 4

1− z

or equivalently

1− z
z2 − 4

dz =
dt

t
.

Integrating both sides gives

1

4
ln | 1

(z + 2)3(z − 2)
| = ln |t|+ C,
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or equivalently

(y + 2t)3(y − 2t) = C

Finally, by the initial condition y(1) = 3, we have

(y + 2t)3(y − 2t) = 125. (2)

Remark: For this problem, we only give the implicit solution formula (3). It should be noted that
the solution to Problem 1(d) satisfies (3), which can not imply that any y(t) satisfying (3) is a
solution to the original Problem 1(d).

(f) It’s noted that y = 0 is a solution and that f(t, y) = y− 2y2 and fy = 1− 4y are continuous on R2,
then by Existence and Uniqueness Theorem, it’s the unique one.1

(f)’ This is a separable ODE, if y − 2y2 6= 0, rewrite as

dy

y − 2y2
= dt.

Then it follows from integrating both sides that

y

1− 2y
= Cet

with arbitrary constant C. Note that y(1) = 1 implies that C = −e−1 and

y =
et−1

2et−1 − 1

for t > 1− ln 2.

(g) Let M = 3t2y + 2ty + y3 and N = t2 + y2, so My = 3t2 + 2t+ 3y2, Nt = 2t. It’s noted that

My −Nt

N
= 3,

so it’s promising to find an intergrating factor µ of the form µ = µ(t). Then multiply the ODE by
µ(t) such that it’s exact, that is,

(µM)y = (µN)t,

so µ(t) satisfies

µ′ =
My −Nt

N
µ = 3µ,

which implies µ(t) = e3t. Since (µM)y = (µN)t, then there exists a function ϕ(t, y) such that

∂tϕ = µM = e3t(3t2y + 2ty + y3), (3)

∂yϕ = µN = e3t(t2 + y2). (4)

By solving (4) firstly, we have

ϕ(t, y) = e3t(t2y +
1

3
y3) + h(t) (5)

with some function h(t). Then insert (5) into (3), we have

h′(t) = 0

which implies that we can take h = 0. Finally, the general solution to the ODE is given by

ϕ = e3t(t2y +
1

3
y3) = C.

The constant C is determined by y(0) = 1, so

e3t(t2y +
1

3
y3) =

1

3
.

1You can also use Method 1 in Problem 1(c) to show that y = 0 is the unique solution.
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(h) It’s noted that the ODE can be wrriten as

y′ =
t2 + 3ty + y2

t2
.

So if let z = y
t , then we have the following ODE

tz′ + z = 1 + 3z + z2

which is separable, so the solution is given by

− 1

z + 1
= ln |t|+ C,

or equivalently

y + t = − t

ln |t|+ C
.

Then by the initial condition y(1) = 0, we can obtain that

y = −t ln t

ln t− 1
, 0 < t < e.

2. (2points=0.5points × 4) Determine whether each of the following equations is exact or not,
if it is then find the solutions:

(a) (et sin y − 3y sin t) + (et cos y + 3 cos t)y′ = 0;

(b) (t+ 2) sin y + t cos yy′ = 0;

(c) t
(t2+y2)3/2

+ y
(t2+y2)3/2

y′ = 0;

(d) y′ = ay+b
cy+d .

Solution:

(a) It’s exact. In fact, let M = et sin y − 3y sin t and N = et cos y + 3 cos t, it’s easy to check
that

My = et cos y − 3 sin t = Nt.

Then by following the procedure in 1(g) 2, the general solution is given by

et sin y + 3y cos t = C,

where C is an arbitrary constant.

(b) It’s not exact. In fact, let M = (t + 2) sin y and N = t cos y, then My = (t + 2) cos y 6=
cos y = Nt.

(c) It’s exact. In fact, let M = t
(t2+y2)3/2

and N = y
(t2+y2)3/2

, so

My = − 3ty

(t2 + y2)5/2
= Nt.

Then by following the procedure in 1(g), the general solution is given by

1

(t2 + y2)1/2
= C

where C is a constant to be determined by additional condition.

2We omit here, please expand the details by yourself.
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(d) It’s exact iff a = 0. In fact, rewrite as

ay + b− (cy + d)y′ = 0,

then let M = ay + b and N = −cy − d, so

My = Nt ⇔ a = 0.

Let a = 0. It’s noted that this is a separable ODE, then the general solution is given by

c

2
y2 + dy = bt+ C

with arbitrary constant C.

3. (2points) Consider the general first order linear equation y′ = p(t)y + g(t), show that

• (0.5points) if y1(t) is a solution to y′ = p(t)y, so is cy1(t) for any c ∈ R;

• (0.5points) if y2(t) is a soluiton to y′ = p(t)y + g(t), so is cy1(t) + y2(t) for any c ∈ R;

• (1point) all the solutions to y′ = p(t)y + g(t) is of the form cy1(t) + y2(t) for some c ∈ R.

Solution:

• It’s noted that for any c ∈ R

d

dt
(cy1(t)) = cy′1(t) = cp(t)y1(t),

so cy1(t) is a solution to y′ = p(t)y.

• It’s noted that for any c ∈ R

d

dt
(cy1(t) + y2(t)) = cy′1(t) + y′2(t) = cp(t)y1 + p(t)y2 + g(t) = p(t)(cy1 + y2) + g(t)

so cy1 + y2 is a solution to y′ = p(t)y + g(t).

• Let y1 6= 0 be a solution to y′ = p(t)y, we first claim that all solutions to y′ = p(t)y are of
the form yc = cy1 for some constant c ∈ R. In fact, consider yc

y1
, it’s easy to get that

d

dt
(
yc
y1

) ≡ 0,

which implies that for any solution yc to y′ = p(t)y there exists some constant c such that
yc = cy1.

Next, for any solution y to y′ = p(t)y + g(t), it’s noted that z = y − y2 satisfies

z′ = p(t)z.

Then by the above claim, we know that there exists some c ∈ R such that y − y2 = cy1.

4. (2points) Consider the differential equation

M(t, y) +N(t, y)y′ = 0.

Assume that we have tM − yN 6= 0, and the fraction
Nt−My

tM−yN = R(ty) depending only on the
quantity ty only, then show (1point) that the above differential equation has an integrating
factor of the form µ(ty) and find (1point) a general formula for this integrating factor.

Solution: Multiplying the ODE by µ(ty) gives that

µ(ty)M(t, y) + µ(ty)N(t, y)y′ = 0,
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then let z = ty, it’s noted that

(µM)y = (µN)t ⇔ µ′(z) = µ(z)
Nt −My

tM − yN
= µ(z)R(z).

Now by solving µ′(z) = µ(z)R(z), we get

µ = Ce
∫
R(z)dz = Ce

∫ ty R(z)dz (6)

where C 6= 0 is an arbitrary constant. Thus in this way, we do find an intergrating factor with
form µ(ty), more presicely, given by the fomula (6).
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