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1 Basic concepts

Classify the following ODEs by their order, linearity.

1. y′′ = x2y + sinx Ans: second-order linear (inhomogeneous) ODE

2. y′′′ = y2 + 2y +
1

y
Ans: third-order non-linear ODE

2 First-order linear ODEs: the method of integrating
factor

Theorem 1. Let p and q be continuous functions on I = (a, b). Then all the solutions of the
ODE

y′(t) = p(t)y(t) + q(t) (1)

are given by

y(t) =
1

µ(t)

(∫
µ(t)q(t)dt+ C

)
, C ∈ R

where
µ(t) = e−

∫
p(t)dt

is called an integrating factor of (1).

Solve the general solution of the following ODEs.

1. y′ = 10y Ans: y = Ce10x

2. xy′ = y + 12x Ans: y = Cx+ 12x log x

3. y′ =
y + 7x2 sinx

x
Ans: y = Cx− 7x cosx

3 Bernoulli Equations

Definition 1. Bernoulli Equations are non-linear ODEs that have the form

dy

dx
= p(x)y + q(x)yn

for some n ∈ R \ {0, 1} and continuous functions p, q.

Bernoulli Equations could be transformed to first-order linear ODEs by w =
1

yn−1
.
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Example. Solve the following initial value problem{
y′(t) =

y(t)

t
+ [y(t)]3

y(1) = −1
2

Solution

y′(t) =
y(t)

t
+ [y(t)]3

y′(t)

[y(t)]3
=

y(t)

t[y(t)]3
+ 1 (∗∗)

−1

2

d

dt

(
1

[y(t)]2

)
=

1

t[y(t)]2
+ 1

d

dt

(
1

[y(t)]2

)
= −2

t

(
1

[y(t)]2

)
− 2

d

dt

(
t2

[y(t)]2

)
= −2t2

t2

[y(t)]2
= −

∫
2t2dt+ C = −2t3

3
+ C

1

[y(t)]2
= −2t

3
+
C

t2

y(t) = ±

√(
C

t2
− 2t

3

)−1
= ±

√
3t√

3C − 2t3

Putting the initial value, we have

y(t) = −
√

3t√
14− 2t3

4 Application to differential inequality

Here comes another interesting and important application of the method of integrating factor,
which is based on the simple observation that an integrating factor for a first order linear ODE
has a definite sign.

Example (Gronwall inequality). Let y : [0, 1] → R be a non-negative differentiable function
with y(0) = 0. Suppose there exists a continuous function φ on [0, 1] and such that

dy

dx
≤ φ(x)y(x)

for all x ∈ [0, 1]. Show that y ≡ 0.
Solution:
We try to “solve” the differential inequality by the method of integrating factor. Let

µ(x) = e−
∫
φ(x)dx > 0

0(**)I should have justified this step more carefully in the tutorial. Note that the initial value is non-zero,
hence the solution is non-zero in a small neighbourhood of 1 (by the continuity of the solution). After all, we
are solving the equation near t = 1, and consequently we are allowed to divide the equation by [y(t)]3. What’s
more, if the solution attains zero for some t > 0, we have by uniqueness argument, the solution is zero in a
neighbourhood of that point. This, together with a continuity argument, implies the solution in constant zero
for all t > 0. Note, however, a solution can be zero at t = 0 without being constant zero for t > 0. Let me also
thank the student who raised this question after the tutorial.
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denote an integrating factor. Then, we have

dy

dx
≤ φ(x)y(x)

dy

dx
− φ(x)y(x) ≤ 0

µ(x)

(
dy

dx
− φ(x)y(x)

)
≤ 0

d

dx
(µ(x)y(x)) ≤ 0∫ θ

0

d

dx
(µ(x)y(x)) dx ≤

∫ θ

0

0dx = 0 ∀θ ∈ (0, 1]

µ(x)y(x)|θ0 = µ(θ)y(θ) ≤ 0

y(θ) ≤ 0

The last inequality forces y(θ) = 0 for all θ ∈ [0, 1].

More generally, we have

Exercise. Let y : [0, 1] → R be non-negative differentiable functions with y(0) = 0. Suppose
there exist non-negative continuous functions φ and ξ on [0, 1] such that

dy

dx
≤ φ(x)y(x) + ξ(x)

for all x ∈ [0, 1]. Then, for all x ∈ [0, 1]

y(x) ≤ e
∫ x
0 φ(s)ds

(
y(0) +

∫ x

0

ξ(s)ds

)
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