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1 Basic concepts

Classify the following ODEs by their order, linearity.

1. o' = 2%y +sinx Ans: second-order linear (inhomogeneous) ODE
le)

1
2. y" =y? + 2y + ; Ans: third-order non-linear ODE

2 First-order linear ODEs: the method of integrating

factor

Theorem 1. Let p and q be continuous functions on I = (a,b). Then all the solutions of the

ODE
y'(t) = p(t)y(t) + q(t)

are given by
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is called an integrating factor of (1).

Solve the general solution of the following ODEs.

1. ¥ =10y Ans: y = Ce'0®

2. vy =y+ 12z Ans: y=Cx + 12xlogx

_ y+Tatsinz

3.y Ans: y=Cx — Txcosx

T

3 Bernoulli Equations
Definition 1. Bernoulli Equations are non-linear ODEs that have the form

d
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for some n € R\ {0,1} and continuous functions p,q.

Bernoulli Equations could be transformed to first-order linear ODEs by w =

n—1"
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Example. Solve the following initial value problem
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Putting the initial value, we have
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4 Application to differential inequality

Here comes another interesting and important application of the method of integrating factor,
which is based on the simple observation that an integrating factor for a first order linear ODE
has a definite sign.

Example (Gronwall inequality). Let y : [0,1] — R be a non-negative differentiable function
with y(0) = 0. Suppose there exists a continuous function ¢ on [0,1] and such that

for all x € [0,1]. Show that y = 0.

Solution: , o , , ,
We try to “solve” the differential inequality by the method of integrating factor. Let

O(**)I should have justified this step more carefully in the tutorial. Note that the initial value is non-zero,
hence the solution is non-zero in a small neighbourhood of 1 (by the continuity of the solution). After all, we
are solving the equation near ¢t = 1, and consequently we are allowed to divide the equation by [y(¢)]3. What’s
more, if the solution attains zero for some t > 0, we have by uniqueness argument, the solution is zero in a
neighbourhood of that point. This, together with a continuity argument, implies the solution in constant zero
for all ¢ > 0. Note, however, a solution can be zero at ¢t = 0 without being constant zero for ¢ > 0. Let me also
thank the student who raised this question after the tutorial.



denote an integrating factor. Then, we have

Y < @yl
& (w)yla) <0
@) (- o) <0
d

The last inequality forces y(0) =0 for all 6 € [0, 1].
More generally, we have

Exercise. Let y : [0,1] — R be non-negative differentiable functions with y(0) = 0. Suppose
there exist non-negative continuous functions ¢ and & on [0,1] such that

Y < @) +£@)

for all x € [0,1]. Then, for all x € [0, 1]

o) < e (y0)+ [ e(s)as)



