PROOF OF TAYLOR’S THEOREM

Here’s some reflection on the proof(s) of Taylor’s theorem. First we recall the (derivative form)
of the theorem:

Theorem 1 (Taylor’s theorem). Suppose f: (a,b) = R is a function on (a,b), where a,b € R with
a < b. Assume that for some positive integer n, f is n-times differentiable on the open interval
(a,b), and that f, f', f",..., =V all extend continuously to the closed interval [a,b] (the extended
functions will still be called f, f', f", ..., f™=Y respectively). Then there exists ¢ € (a,b) such that

=1 k) (g (") (¢
k=0

A key observation is that when n = 1, this reduces to the ordinary mean-value theorem. This
suggests that we may modify the proof of the mean value theorem, to give a proof of Taylor’s
theorem.

The proof of the mean-value theorem comes in two parts: first, by subtracting a linear (i.e.
degree 1) polynomial, we reduce to the case where f(a) = f(b) = 0. Next, the special case where
f(a) = f(b) = 0 follows from Rolle’s theorem.

In the proof of the Taylor’s theorem below, we mimic this strategy.
The key is to observe the following generalization of Rolle’s theorem:

Proposition 2. Suppose F': (a,b) — R is a function on (a,b), where a,b € R with a < b. Assume
that for some positive integer n, F is n-times differentiable on the open interval (a,b), and that
F F F", ..., F" gl extend continuously to the closed interval [a,b] (the extended functions will
still be called F,F', F",...,F"1 respectively). If in addition

Fla)=F(a)=- = F(n—l)(a) =0, and F(b)=0,

then there exists ¢ € (a,b) such that
FM(¢) =0.

Proof. The proof of this proposition follows readily from an n-fold application of Rolle’s theorem:
Since F(a) = F(b) = 0, by Rolle’s theorem applied to F' on [a, b], there exists ¢; € (a,b) such that

F’(Cl) =0.

Next, since F'(a) = F'(c1) = 0, by Rolle’s theorem applied to F' on [a, ¢1], there exists ¢2 € (a,c1)
such that
F”(Cg) =0.
Repeat, then we get cq, ..., ¢, such that
a<cp<cp1<--<cp <b,
with

F®(e)=0 fork=1,2,...,n.
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In particular, setting ¢ = ¢, we have ¢ € (a,b), and
FM(¢) =0.
]

First proof of Theorem 1. Now we apply the proposition to prove Theorem 1. The key is to con-
struct a degree n polynomial, that allows us to reduce to the case in Proposition 2. The fact that
such polynomial exists follows by a dimension counting argument in linear algebra. But we will
need the explicit expression of the polynomial, so let’s construct the polynomial explicitly.

Indeed, let f be as in Theorem 1. Let

z)=> ap(z —a)f
k=0

(This is a convenient form of expressing a polynomial of degree k, since we will need to compute
high order derivatives of this polynomial at the point a.) We will find coefficients ag, a1, - . ., a,, such
that F(z) := f(x) — P(x) satisfies the conditions of Proposition 2. Indeed, for £ =0,1,...,n — 1,
we have

FM(a) = fM(a) — Klay,

so in order for F(a) = F'(a) = --- = F("Y(a) = 0, it suffices to set
(k)
ak:fk'(a) for k=0,1,...,n—1.

It remains then to determine a,. But this is determined by the equation F'(b) = 0: indeed

n n—1 (k) a
=) ar(b—a)f = f(b) - / k,( )(b—a)k—an(b—a)”,

so setting F'(b) = 0, we get

1 f B)( o)
an =5 ( Z i :
Now we have found a polynomial P such that F(x) := f(x) — P(z) satisfies the conditions of
Proposition 2. Hence there exists ¢ € (a,b) such that F(™)(c) = 0. But

n—1
FO) () = FO(e) — PO (e) = FO (&) — may = ;) — - o ST

— n |
(b—a) = k!
Since F(™(¢) = 0, it follows that
(k
_ )y f o)k
ie.
®)(a (n)
Zf k+f '(C)(b_a)n
n!
as desired. This completes the proof of Taylor’s theorem. O

We can also give a second proof, based on the Cauchy mean-value theorem.
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Second proof of Theorem 1. Let f be as in Theorem 1, and

n—1
- Z (z —a)k.
k=0
Let also
G(z) = (z —a)".
Then both F and G vanishes to order (n — 1) at a, in the sense that F,F' F” ... F(=1 and
G,G',G",...,G™ 1) all extends continuously to [a,b], and the extended functions satisfy
F(a)=F'(a) =--- = F" Y(a) =0,
Gla) =G'(a) =---=G" V(a) = 0.
Note also that G',G”,...,G™ all never vanishes on (a,b). Hence we may apply Cauchy’s mean-

value theorem n times: the first time we obtain

F() F(@®)—F(a) F'(c1)

G(b)  G(b) —Gla)  G'(c1)
for some ¢; € (a,b). Next we can repeat this argument, on the interval [a, ¢1] instead of [a, b]: we
then obtain

Fler) _ Fller) — Fla) _ F'(c)
G'(c1)  G'(aa) —G'(a)  G'(c1)

for some ¢y € (a,c1). Repeating, we obtain ¢1, ..., ¢, such that

a<cp<cp<--<ec <b,
with
F(b) _ Fler) _ F'(es) _ FM(cy)
Gb)  G'(cr)  G'(c2) T GM(ep)
In particular, setting ¢ = ¢,, we have ¢ € (a,b), and
F(b) _ F™(c)
Gb)  GW(e)

This is equivalent to saying that

Fb) = P B2 —qyk p ()
(b—a)” n!

which upon rearranging yields

n—1 n
Zf b—a f( )(C)(b_a)n
k=0

as desired. This completes the second proof of Taylor’s theorem. ]



