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(1) In each part, find a formula for the general term of the sequence, starting with
n = 1.

(a) 1,
1

4
,

1

16
,

1

64
, . . .

(b) 1,−1

4
,

1

16
,− 1

64
, . . .

(c)
3

4
,
15

16
,
63

64
,
255

256
. . .

(d) 0,
1√
π
,

4
3
√
π
,

9
4
√
π
, . . .

Solution:

(a) The general term of the sequence is an =
1

4n−1
.

(b) The general term of the sequence is an =
(−1)n+1

4n−1
.

(c) The general term of the sequence is an = 1− 1

4n
.

(d) The general term of the sequence is an =
(n− 1)2

n
√
π

.

(2) Determine whether the following sequences converge or diverge.

(a) {0, 6, 0, 0, 6, 0, 0, 0, 6, . . . }

(b) an =
sin 2n

1 +
√
n

(c) an =
nn

n!
Solution:
(a) The sequence diverges because both 0 and 6 appear indefinitely in the tail of

the sequence.
(b) Note that, for all n ≥ 1, −1 ≤ sin 2n ≤ 1, and hence

− 1

1 +
√
n
≤ sin 2n

1 +
√
n
≤ 1

1 +
√
n
.

Also, we have lim
n→∞

− 1

1 +
√
n

= lim
n→∞

1

1 +
√
n

= 0.

By squeeze theorem, lim
n→∞

an = lim
n→∞

sin 2n

1 +
√
n

= 0. The sequence converges.

(c) Note that, for all n ≥ 1,

an =
nn

n!
=
n

1
· n

2
· · · n

n
≥ n · 1 · · · 1 = n.

The sequence is unbounded and hence diverges.
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(3) Determine whether the sequence an =
13

n4
+

23

n4
+ · · · + n3

n4
converges or diverges.

If it converges, find the limit.

Solution: Note that, for all n ≥ 1,

an =
13

n4
+

23

n4
+ · · ·+ n3

n4
=

1

n4

n∑
i=1

i3

=
1

n4
· n

2(n+ 1)2

4

=
1

4

(
1 +

1

n

)2

.

Hence lim
n→∞

an = lim
n→∞

1

4

(
1 +

1

n

)2

=
1

4
(1 + 0)2 =

1

4
, and the sequence converges.

(4) Determine whether the sequence an =
n12 + sin(13n+ 8)

n13 + 8
converges or diverges.

If it converges, find the limit.

Solution: Note that, for all n ≥ 1, −1 ≤ sin(13n+ 8) ≤ 1, and hence

− 1

n13 + 8
≤ sin(13n+ 8)

n13 + 8
≤ 1

n13 + 8
.

Also, we have lim
n→∞

− 1

n13 + 8
= lim

n→∞

1

n13 + 8
= 0.

By squeeze theorem, lim
n→∞

sin(13n+ 8)

n13 + 8
= 0. Therefore,

lim
n→∞

an = lim
n→∞

n12

n13 + 8
+ lim

n→+∞

sin(13n+ 8)

n13 + 8
= lim

n→∞

1/n

1 + 8/n13
+ 0 = 0.

(5) Put the following statements in order to justify why lim
n→∞

2n− 8 + 8n2

5n2 − 5n− 8
=

8

5
Solution:
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lim
n→∞

2n− 8 + 8n2

5n2 − 5n− 8
=

8

5
= lim

n→∞

n2

(
8 +

2

n
− 8

n2

)
n2

(
5− 5

n
− 8

n2

)

= lim
n→∞

8 +
2

n
− 8

n2

5− 5

n
− 8

n2

=

lim
n→∞

(
8 +

2

n
− 8

n2

)
lim
n→∞

(
5− 5

n
− 8

n2

)

=

lim
n→∞

(8) + 2 lim
n→∞

(
1

n

)
− 8 lim

n→∞

(
1

n2

)
lim
n→∞

(5)− 5 lim
n→∞

(
1

n

)
− 8 lim

n→∞

(
1

n2

)
=

8 + 2 · 0− 8 · 0
5− 5 · 0− 8 · 0

=
8

5
.

(6) Use algebra to simplify the expression before evaluating the limit. In particular,
factor the highest power of n from the numerator and denominator, then cancel
as many factors of n as possible.

lim
n→∞

7n

(6n3 + 2)1/3

Solution:

lim
n→∞

7n

(6n3 + 2)1/3
= lim

n→∞

7n

n(6 + 2/n3)1/3
= lim

n→∞

7

(6 + 2/n3)1/3
=

7

61/3
.

(7) Part 1: Evaluating a series

Consider the sequence {an} =

{
2

n2 + 2n

}
.

(a) Find lim
n→∞

an if it exists.

(b) Find
∞∑
n=1

an if it exists.

Solution:

(a) lim
n→∞

an = lim
n→∞

2

n2 + 2n
= lim

n→∞

2/n2

1 + 2/n
=

0

1 + 0
= 0.

(b) Note that, for n ≥ 1,

an =
2

n(n+ 2)
=

1

n
− 1

n+ 2
.
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Hence, for N ≥ 2,

N∑
n=1

an =
N∑
n=1

(
1

n
− 1

n+ 2

)
=

(
1

1
− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+ · · ·+

(
1

N
− 1

N + 2

)
= 1 +

1

2
+

(
1

3
− 1

3

)
+ · · ·+

(
1

N
− 1

N

)
− 1

N + 1
− 1

N + 2

=
3

2
− 1

N + 1
− 1

N + 2
.

Therefore,

∞∑
n=1

an = lim
N→∞

N∑
n=1

an = lim
N→∞

(
3

2
− 1

N + 1
− 1

N + 2

)
=

3

2
.

Part 2: Evaluating another series

Consider the sequence {bn} =

{
ln

(
n+ 1

n

)}
.

(a) Find lim
n→∞

bn if it exists.

(b) Find
∞∑
n=1

bn if it exists.

Solution:

(a) lim
n→∞

bn = lim
n→∞

ln

(
n+ 1

n

)
= lim

n→∞
ln

(
1 +

1

n

)
= ln(1 + 0) = 0.

(b) Note that, for n ≥ 1,

bn = ln

(
n+ 1

n

)
= ln(n+ 1)− lnn.

Hence, for N ≥ 1,

N∑
n=1

bn =
N∑
n=1

(ln(n+ 1)− lnn)

=
N∑
n=1

ln(n+ 1)−
N∑
n=1

lnn

=
N+1∑
n=2

lnn−
N∑
n=1

lnn

= ln(N + 1)− ln 1

= ln(N + 1)

Therefore,

∞∑
n=1

bn = lim
N→∞

N∑
n=1

bn = lim
N→∞

ln(N + 1) = +∞.

Part 3: Developing conceptual understanding
Suppose {cn} is a sequence.

Solution:



5

(a) If lim
n→∞

cn = 0, then the series
∞∑
n=1

cn may or may not converge.

(b) If lim
n→∞

cn 6= 0, then the series
∞∑
n=1

cn cannot converge.

(c) If the series
∞∑
n=1

cn converges, then lim
n→∞

cn must be equal to 0.

(8) Consider the sequence

an =
1

7n2 − 896n+ 28677
.

This sequence is not monotone for all n. Determine if the sequence is eventually
monotone for n ≥ N for some whole number N .

Solution: Note that

f(x) = 7x2 − 896x+ 28677 = 7(x− 64)2 + 5 > 0 for any x ∈ R.
Hence an = 1/f(n) > 0 for n ≥ 1. Moreover, we have

an − an+1 =
1

7n2 − 896n+ 28677
− 1

7(n+ 1)2 − 896(n+ 1) + 28677

=
14n− 889

f(n)f(n+ 1){
< 0 if 1 ≤ n ≤ 63

> 0 if n ≥ 64
.

Therefore the sequence is eventually monotone decreasing, and N = 64 is the least
value of N such that the sequence is monotone decreasing for n ≥ N .

(9) Consider the recursively defined sequence:

a1 = 5

an+1 =
n+ 1

n2
an, for n ≥ 1

Solution:
(a) Clearly an ≥ 0 for all n ≥ 1. So the sequence is bounded below by 0.
(b) The sequence is eventually monotone decreasing since a2 = 10 > 5 = a1 while

an+1 =
n+ 1

n2
an ≤ an for n ≥ 2.

(c) From above, we see that an ≤ a2 = 10 for n ≥ 1. So the sequence is bounded
above by 10.

(d) By Monotone Convergence Theorem, {an} converges to some limit `. Thus

` = lim
n→∞

an+1 =

(
lim
n→∞

n+ 1

n2

)(
lim
n→∞

an

)
=

(
lim
n→∞

(
1

n
+

1

n2
)

)
`

= 0 · ` = 0.

Therefore the limit of the sequence {an} is 0.
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(10) Find the following limit.

lim
n→∞

[e−5n cos(5n)]

Solution: Note that, for all n ≥ 1, −1 ≤ cos(5n) ≤ 1, and hence

−e−5n ≤ e−5n cos(5n) ≤ e−5n.

Also, we have lim
n→∞

−e−5n = lim
n→∞

e−5n = 0.

By squeeze theorem, lim
n→∞

[e−5n cos(5n)] = 0.

(11) Consider the recursively defined sequence:

a1 =
√

7

an+1 =
√

7 + an, for n ≥ 1

Solution:
(a) The sequence is monotone increasing.

To see this let Q(n) be the statement “an+1 ≥ an”.

• When n = 1, a2 =
√

7 +
√

7 ≥
√

7 = a1. Therefore Q(1) is true.
• Suppose Q(n) is true for some natural number n ≥ 1, i.e. an+1 ≥ an.

Then,

an+2 ≥
√

7 + an+1 ≥
√

7 + an = an+1.

Therefore, Q(n+ 1) is true.
By mathematical induction, an+1 ≥ an for all natural numbers n. Hence {an}
is monotone increasing.

(b) The sequence is bounded below by 0 and bounded above by 4.
To see this, let P (n) be the statement “0 ≤ an ≤ 4”.
• When n = 1, 0 ≤ a1 =

√
7 ≤ 4. Therefore P (1) is true.

• Suppose P (n) is true for some natural number n ≥ 1, i.e. 0 ≤ an ≤ 4.
Then,

0 ≤ an+1 =
√

7 + an ≤
√

7 + 4 =
√

11 ≤ 4.

Therefore, P (n+ 1) is true.
By mathematical induction, 0 ≤ an ≤ 4 for all natural numbers n. Hence
{an} is bounded.

(c) By Monotone Convergence Theorem, {an} is convergent. Let lim
n→∞

an = A.

Since a2n+1 = 7 + an, we have

lim
n→∞

a2n+1 = lim
n→∞

(7 + an)

A2 = 7 + A

A2 − A− 7 = 0.

So A =
1 +
√

29

2
or A =

1−
√

29

2
, where the later is rejected since an ≥ 0.

Therefore, lim
n→∞

an =
1 +
√

29

2
.
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(12) Consider the recursively defined sequence:

a1 = 1, a2 = 1

an+2 =
an+1 + an

2
, for n ≥ 1

Find the limit of the sequence if it exists.

Solution:
From the definition of the sequence,

a3 =
a2 + a1

2
=

1 + 1

2
= 1,

a4 =
a3 + a2

2
=

1 + 1

2
= 1,

and so on, we thus have

an+2 =
an+1 + an

2
=

1 + 1

2
= 1, for n ≥ 1.

Hence the sequence is just a constant sequence of 1’s, and clearly lim
n→∞

an = 1.

(13) Consider the sequence

an =
n cos(nπ)

2n− 1
.

Write the first five terms of an, and find lim
n→∞

an.

Solution: The first five terms are

a1 = −1, a2 =
2

3
, a3 = −3

5
, a4 =

4

7
, a5 = −5

9
.

Note that

lim
n→∞

a2n = lim
n→∞

2n cos(2nπ)

4n− 1
= lim

n→∞

1

2− 1/2n
=

1

2
,

while

lim
n→∞

a2n+1 = lim
n→∞

(2n+ 1) cos((2n+ 1)π)

4n+ 1
= lim

n→∞
−1 + 1/2n

2 + 1/2n
= −1

2
.

Since lim
n→∞

a2n 6= lim
n→∞

a2n+1, lim
n→∞

an does not exist.

(14) The sequence {an} is defined by a1 = 2, and

an+1 =
1

2

(
an +

2

an

)
,

for n ≥ 1. Assuming that {an} converges, find its limit.

Solution: Let a = lim
n→∞

an. Since an+1 =
1

2

(
an +

2

an

)
, we have

a =
1

2

(
a+

2

a

)
2a2 = a2 + 2

a2 = 2.

So a =
√

2 or a = −
√

2, where the later is rejected since an ≥ 0. Therefore,
lim
n→∞

an = a =
√

2.
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(15) Determine whether the sequence is divergent or convergent. If it is convergent,
evaluate its limit.

lim
n→∞

18 + 25 arctan(n!)

19n

Solution: Note that, for all n ≥ 1,

−π
2
≤ arctan(n!) ≤ π

2
,

and hence
18− 25π

2

19n
≤ 18 + 25 arctan(n!)

19n
≤

18 + 25π
2

19n

Also, we have lim
n→∞

18− 25π
2

19n
= lim

n→∞

18 + 25π
2

19n
= 0.

By squeeze theorem, lim
n→∞

18 + 25 arctan(n!)

19n
= 0.

(16) Determine whether the sequence is divergent or convergent. If it is convergent,
evaluate its limit.

lim
n→∞

(−1)n sin(4/n)

Solution: Note that, for n ≥ 1,

−| sin(4/n)| ≤ (−1)n sin(4/n) ≤ | sin(4/n)|.
Moreover, lim

n→∞
| sin(4/n)| = | sin(0)| = 0, and similarly lim

n→∞
−| sin(4/n)| = 0.

Therefore lim
n→∞

(−1)n sin(4/n) = 0.

(17) Consider the sequence

an =
(3n− 1)!

(3n+ 1)!
.

Describe the behaviour of the sequence.

Solution: Note that an =
1

3n(3n+ 1)
. Thus, for n ≥ 1,

an =
1

3n(3n+ 1)
≥ 1

3(n+ 1)(3(n+ 1) + 1)
= an+1

Hence {an} is monotone decreasing for all n.
Moreover

0 ≤ an =
1

3n(3n+ 1)
≤ 1, for all n ≥ 1.

So {an} is both bounded above and bounded below.
By Monotone Convergence Theorem, {an} converges. Indeed,

lim
n→∞

an = lim
n→∞

1

3n(3n+ 1)
= 0.


