THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010 University Mathematics (Fall 2020) Suggested Solution of Coursework 1

- (1) In each part, find a formula for the general term of the sequence, starting with n = 1.
 - (a) $1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \dots$ (b) $1, -\frac{1}{4}, \frac{1}{16}, -\frac{1}{64}, \dots$ (c) $\frac{3}{4}, \frac{15}{16}, \frac{63}{64}, \frac{255}{256} \dots$
 - (d) $0, \frac{1}{\sqrt{\pi}}, \frac{4}{\sqrt[3]{\pi}}, \frac{9}{\sqrt[4]{\pi}}, \dots$

Solution:

- (a) The general term of the sequence is $a_n = \frac{1}{4^{n-1}}$. (b) The general term of the sequence is $a_n = \frac{(-1)^{n+1}}{4^{n-1}}$. (c) The general term of the sequence is $a_n = 1 - \frac{1}{4^n}$. (d) The general term of the sequence is $a_n = \frac{(n-1)^2}{\sqrt[n]{\pi}}$.
- (2) Determine whether the following sequences converge or diverge.

(a)
$$\{0, 6, 0, 0, 6, 0, 0, 0, 6, \dots\}$$

(b) $a_n = \frac{\sin 2n}{1 + \sqrt{n}}$
(c) $a_n = \frac{n^n}{n!}$

Solution:

- (a) The sequence diverges because both 0 and 6 appear indefinitely in the tail of the sequence.
- (b) Note that, for all $n \ge 1, -1 \le \sin 2n \le 1$, and hence

$$-\frac{1}{1+\sqrt{n}} \le \frac{\sin 2n}{1+\sqrt{n}} \le \frac{1}{1+\sqrt{n}}.$$

Also, we have $\lim_{n \to \infty} -\frac{1}{1+\sqrt{n}} = \lim_{n \to \infty} \frac{1}{1+\sqrt{n}} = 0.$ By squeeze theorem, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sin 2n}{1+\sqrt{n}} = 0.$ The sequence converges.

(c) Note that, for all $n \ge 1$,

$$a_n = \frac{n^n}{n!} = \frac{n}{1} \cdot \frac{n}{2} \cdots \frac{n}{n} \ge n \cdot 1 \cdots 1 = n.$$

The sequence is unbounded and hence diverges.

(3) Determine whether the sequence $a_n = \frac{1^3}{n^4} + \frac{2^3}{n^4} + \dots + \frac{n^3}{n^4}$ converges or diverges. If it converges, find the limit.

Solution: Note that, for all $n \ge 1$,

$$a_n = \frac{1^3}{n^4} + \frac{2^3}{n^4} + \dots + \frac{n^3}{n^4} = \frac{1}{n^4} \sum_{i=1}^n i^3$$
$$= \frac{1}{n^4} \cdot \frac{n^2(n+1)^2}{4}$$
$$= \frac{1}{4} \left(1 + \frac{1}{n}\right)^2.$$

Hence $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{4} \left(1 + \frac{1}{n} \right)^2 = \frac{1}{4} \left(1 + 0 \right)^2 = \frac{1}{4}$, and the sequence converges. (4) Determine whether the sequence $a_n = \frac{n^{12} + \sin(13n + 8)}{n^{13} + 8}$ converges or diverges. If it converges, find the limit.

Solution: Note that, for all $n \ge 1, -1 \le \sin(13n+8) \le 1$, and hence

$$-\frac{1}{n^{13}+8} \le \frac{\sin(13n+8)}{n^{13}+8} \le \frac{1}{n^{13}+8}.$$

Also, we have $\lim_{n \to \infty} -\frac{1}{n^{13}+8} = \lim_{n \to \infty} \frac{1}{n^{13}+8} = 0.$ By squeeze theorem, $\lim_{n \to \infty} \frac{\sin(13n+8)}{n^{13}+8} = 0.$ Therefore,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^{12}}{n^{13} + 8} + \lim_{n \to +\infty} \frac{\sin(13n + 8)}{n^{13} + 8} = \lim_{n \to \infty} \frac{1/n}{1 + 8/n^{13}} + 0 = 0.$$

(5) Put the following statements in order to justify why $\lim_{n\to\infty} \frac{2n-8+8n^2}{5n^2-5n-8} = \frac{8}{5}$ Solution:

$$\lim_{n \to \infty} \frac{2n - 8 + 8n^2}{5n^2 - 5n - 8} = \frac{8}{5} = \lim_{n \to \infty} \frac{n^2 \left(8 + \frac{2}{n} - \frac{8}{n^2}\right)}{n^2 \left(5 - \frac{5}{n} - \frac{8}{n^2}\right)}$$
$$= \lim_{n \to \infty} \frac{8 + \frac{2}{n} - \frac{8}{n^2}}{5 - \frac{5}{n} - \frac{8}{n^2}}$$
$$= \frac{\lim_{n \to \infty} \left(8 + \frac{2}{n} - \frac{8}{n^2}\right)}{\lim_{n \to \infty} \left(5 - \frac{5}{n} - \frac{8}{n^2}\right)}$$
$$= \frac{\lim_{n \to \infty} \left(8\right) + 2\lim_{n \to \infty} \left(\frac{1}{n}\right) - 8\lim_{n \to \infty} \left(\frac{1}{n^2}\right)}{\lim_{n \to \infty} (5) - 5\lim_{n \to \infty} \left(\frac{1}{n}\right) - 8\lim_{n \to \infty} \left(\frac{1}{n^2}\right)}$$
$$= \frac{8 + 2 \cdot 0 - 8 \cdot 0}{5 - 5 \cdot 0 - 8 \cdot 0}$$
$$= \frac{8}{5}.$$

(6) Use algebra to simplify the expression before evaluating the limit. In particular, factor the highest power of n from the numerator and denominator, then cancel as many factors of n as possible.

$$\lim_{n \to \infty} \frac{7n}{(6n^3 + 2)^{1/3}}$$

Solution:

$$\lim_{n \to \infty} \frac{7n}{(6n^3 + 2)^{1/3}} = \lim_{n \to \infty} \frac{7n}{n(6 + 2/n^3)^{1/3}} = \lim_{n \to \infty} \frac{7}{(6 + 2/n^3)^{1/3}} = \frac{7}{6^{1/3}}.$$

(7) Part 1: Evaluating a series

Consider the sequence $\{a_n\} = \left\{\frac{2}{n^2 + 2n}\right\}$. (a) Find $\lim_{n \to \infty} a_n$ if it exists. (b) Find $\sum_{n=1}^{\infty} a_n$ if it exists. Solution: (a) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2}{n^2 + 2n} = \lim_{n \to \infty} \frac{2/n^2}{1 + 2/n} = \frac{0}{1 + 0} = 0$. (b) Note that, for $n \ge 1$,

$$a_n = \frac{2}{n(n+2)} = \frac{1}{n} - \frac{1}{n+2}.$$

Hence, for $N \ge 2$,

$$\sum_{n=1}^{N} a_n = \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$
$$= \left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \dots + \left(\frac{1}{N} - \frac{1}{N+2} \right)$$
$$= 1 + \frac{1}{2} + \left(\frac{1}{3} - \frac{1}{3} \right) + \dots + \left(\frac{1}{N} - \frac{1}{N} \right) - \frac{1}{N+1} - \frac{1}{N+2}$$
$$= \frac{3}{2} - \frac{1}{N+1} - \frac{1}{N+2}.$$

Therefore,

$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n = \lim_{N \to \infty} \left(\frac{3}{2} - \frac{1}{N+1} - \frac{1}{N+2} \right) = \frac{3}{2}$$

Part 2: Evaluating another series

Consider the sequence
$$\{b_n\} = \left\{ \ln\left(\frac{n+1}{n}\right) \right\}$$
.
(a) Find lim b_n if it exists.

(a) Find $\lim_{n \to \infty} b_n$ if it exists (b) Find $\sum_{n=1}^{\infty} b_n$ if it exists. Solution:

(a)
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \ln\left(\frac{n+1}{n}\right) = \lim_{n \to \infty} \ln\left(1+\frac{1}{n}\right) = \ln(1+0) = 0.$$

(b) Note that, for $n \ge 1$,

$$b_n = \ln\left(\frac{n+1}{n}\right) = \ln(n+1) - \ln n.$$

Hence, for $N \ge 1$,

$$\sum_{n=1}^{N} b_n = \sum_{n=1}^{N} (\ln(n+1) - \ln n)$$
$$= \sum_{n=1}^{N} \ln(n+1) - \sum_{n=1}^{N} \ln n$$
$$= \sum_{n=2}^{N+1} \ln n - \sum_{n=1}^{N} \ln n$$
$$= \ln(N+1) - \ln 1$$
$$= \ln(N+1)$$

Therefore,

$$\sum_{n=1}^{\infty} b_n = \lim_{N \to \infty} \sum_{n=1}^{N} b_n = \lim_{N \to \infty} \ln(N+1) = +\infty.$$

Part 3: Developing conceptual understanding Suppose $\{c_n\}$ is a sequence. Solution:

- (a) If $\lim_{n\to\infty} c_n = 0$, then the series $\sum_{n=1}^{\infty} c_n$ may or may not converge.
- (b) If $\lim_{n \to \infty} c_n \neq 0$, then the series $\sum_{n=1}^{\infty} c_n$ cannot converge.

(c) If the series
$$\sum_{n=1}^{\infty} c_n$$
 converges, then $\lim_{n \to \infty} c_n$ must be equal to 0.

(8) Consider the sequence

$$a_n = \frac{1}{7n^2 - 896n + 28677}$$

This sequence is **not** monotone for all n. Determine if the sequence is eventually monotone for $n \ge N$ for some whole number N.

Solution: Note that

$$f(x) = 7x^2 - 896x + 28677 = 7(x - 64)^2 + 5 > 0$$
 for any $x \in \mathbb{R}$.

Hence $a_n = 1/f(n) > 0$ for $n \ge 1$. Moreover, we have

$$a_n - a_{n+1} = \frac{1}{7n^2 - 896n + 28677} - \frac{1}{7(n+1)^2 - 896(n+1) + 28677}$$
$$= \frac{14n - 889}{f(n)f(n+1)}$$
$$\begin{cases} < 0 & \text{if } 1 \le n \le 63 \\ > 0 & \text{if } n \ge 64 \end{cases}.$$

Therefore the sequence is eventually monotone decreasing, and N = 64 is the least value of N such that the sequence is monotone decreasing for $n \ge N$.

(9) Consider the recursively defined sequence:

$$a_1 = 5$$
$$a_{n+1} = \frac{n+1}{n^2} a_n, \quad \text{for } n \ge 1$$

Solution:

- (a) Clearly $a_n \ge 0$ for all $n \ge 1$. So the sequence is bounded below by 0.
- (b) The sequence is eventually monotone decreasing since $a_2 = 10 > 5 = a_1$ while

$$a_{n+1} = \frac{n+1}{n^2} a_n \le a_n \quad \text{ for } n \ge 2.$$

- (c) From above, we see that $a_n \leq a_2 = 10$ for $n \geq 1$. So the sequence is bounded above by 10.
- (d) By Monotone Convergence Theorem, $\{a_n\}$ converges to some limit ℓ . Thus

$$\ell = \lim_{n \to \infty} a_{n+1} = \left(\lim_{n \to \infty} \frac{n+1}{n^2}\right) \left(\lim_{n \to \infty} a_n\right)$$
$$= \left(\lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n^2}\right)\right) \ell$$
$$= 0 \cdot \ell = 0.$$

Therefore the limit of the sequence $\{a_n\}$ is 0.

(10) Find the following limit.

$$\lim_{n \to \infty} \left[e^{-5n} \cos(5n) \right]$$

Solution: Note that, for all $n \ge 1, -1 \le \cos(5n) \le 1$, and hence

 $-e^{-5n} \le e^{-5n} \cos(5n) \le e^{-5n}.$

Also, we have $\lim_{n \to \infty} -e^{-5n} = \lim_{n \to \infty} e^{-5n} = 0.$ By squeeze theorem, $\lim_{n \to \infty} [e^{-5n} \cos(5n)] = 0.$

(11) Consider the recursively defined sequence:

$$a_1 = \sqrt{7}$$
$$a_{n+1} = \sqrt{7 + a_n}, \quad \text{for } n \ge 1$$

Solution:

- (a) The sequence is monotone increasing.
 - To see this let Q(n) be the statement " $a_{n+1} \ge a_n$ ".
 - When n = 1, $a_2 = \sqrt{7 + \sqrt{7}} \ge \sqrt{7} = a_1$. Therefore Q(1) is true.
 - Suppose Q(n) is true for some natural number $n \ge 1$, i.e. $a_{n+1} \ge a_n$. Then,

$$a_{n+2} \ge \sqrt{7 + a_{n+1}} \ge \sqrt{7 + a_n} = a_{n+1}.$$

Therefore, Q(n+1) is true.

By mathematical induction, $a_{n+1} \ge a_n$ for all natural numbers n. Hence $\{a_n\}$ is monotone increasing.

(b) The sequence is bounded below by 0 and bounded above by 4.

To see this, let P(n) be the statement " $0 \le a_n \le 4$ ".

- When $n = 1, 0 \le a_1 = \sqrt{7} \le 4$. Therefore P(1) is true.
- Suppose P(n) is true for some natural number $n \ge 1$, i.e. $0 \le a_n \le 4$. Then,

$$0 \le a_{n+1} = \sqrt{7 + a_n} \le \sqrt{7 + 4} = \sqrt{11} \le 4.$$

Therefore, P(n+1) is true.

By mathematical induction, $0 \le a_n \le 4$ for all natural numbers n. Hence $\{a_n\}$ is bounded.

(c) By Monotone Convergence Theorem, $\{a_n\}$ is convergent. Let $\lim_{n \to \infty} a_n = A$. Since $a_{n+1}^2 = 7 + a_n$, we have

$$\lim_{n \to \infty} a_{n+1}^2 = \lim_{n \to \infty} (7 + a_n)$$
$$A^2 = 7 + A$$
$$A^2 - A - 7 = 0.$$

So $A = \frac{1 + \sqrt{29}}{2}$ or $A = \frac{1 - \sqrt{29}}{2}$, where the later is rejected since $a_n \ge 0$. Therefore, $\lim_{n \to \infty} a_n = \frac{1 + \sqrt{29}}{2}$. (12) Consider the recursively defined sequence:

$$a_1 = 1, \quad a_2 = 1$$

 $a_{n+2} = \frac{a_{n+1} + a_n}{2}, \quad \text{for } n \ge 1$

Find the limit of the sequence if it exists.

Solution:

From the definition of the sequence,

$$a_3 = \frac{a_2 + a_1}{2} = \frac{1+1}{2} = 1,$$

$$a_4 = \frac{a_3 + a_2}{2} = \frac{1+1}{2} = 1,$$

and so on, we thus have

$$a_{n+2} = \frac{a_{n+1} + a_n}{2} = \frac{1+1}{2} = 1, \quad \text{ for } n \ge 1.$$

Hence the sequence is just a constant sequence of 1's, and clearly $\lim_{n\to\infty} a_n = 1$.

(13) Consider the sequence

$$a_n = \frac{n\cos(n\pi)}{2n-1}.$$

Write the first five terms of a_n , and find $\lim_{n\to\infty} a_n$.

Solution: The first five terms are

$$a_1 = -1, \ a_2 = \frac{2}{3}, \ a_3 = -\frac{3}{5}, \ a_4 = \frac{4}{7}, \ a_5 = -\frac{5}{9}.$$

Note that

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} \frac{2n \cos(2n\pi)}{4n - 1} = \lim_{n \to \infty} \frac{1}{2 - 1/2n} = \frac{1}{2}$$

while

$$\lim_{n \to \infty} a_{2n+1} = \lim_{n \to \infty} \frac{(2n+1)\cos((2n+1)\pi)}{4n+1} = \lim_{n \to \infty} -\frac{1+1/2n}{2+1/2n} = -\frac{1}{2}.$$

Since $\lim_{n \to \infty} a_{2n} \neq \lim_{n \to \infty} a_{2n+1}$, $\lim_{n \to \infty} a_n$ does not exist.

(14) The sequence $\{a_n\}$ is defined by $a_1 = 2$, and

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right),$$

for $n \ge 1$. Assuming that $\{a_n\}$ converges, find its limit.

Solution: Let
$$a = \lim_{n \to \infty} a_n$$
. Since $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$, we have
 $a = \frac{1}{2} \left(a + \frac{2}{a} \right)$
 $2a^2 = a^2 + 2$
 $a^2 = 2$.

So $a = \sqrt{2}$ or $a = -\sqrt{2}$, where the later is rejected since $a_n \ge 0$. Therefore, $\lim_{n \to \infty} a_n = a = \sqrt{2}$.

(15) Determine whether the sequence is divergent or convergent. If it is convergent, evaluate its limit.

$$\lim_{n \to \infty} \frac{18 + 25 \arctan(n!)}{19^n}$$

Solution: Note that, for all $n \ge 1$,

$$-\frac{\pi}{2} \le \arctan(n!) \le \frac{\pi}{2},$$

and hence

and hence

$$\frac{18 - \frac{25\pi}{2}}{19^n} \le \frac{18 + 25 \arctan(n!)}{19^n} \le \frac{18 + \frac{25\pi}{2}}{19^n}$$
Also, we have
$$\lim_{n \to \infty} \frac{18 - \frac{25\pi}{2}}{19^n} = \lim_{n \to \infty} \frac{18 + \frac{25\pi}{2}}{19^n} = 0.$$
By squeeze theorem,
$$\lim_{n \to \infty} \frac{18 + 25 \arctan(n!)}{19^n} = 0.$$

(16) Determine whether the sequence is divergent or convergent. If it is convergent, evaluate its limit.

$$\lim_{n \to \infty} (-1)^n \sin(4/n)$$

Solution: Note that, for $n \ge 1$,

$$-|\sin(4/n)| \le (-1)^n \sin(4/n) \le |\sin(4/n)|.$$

Moreover, $\lim_{n\to\infty} |\sin(4/n)| = |\sin(0)| = 0$, and similarly $\lim_{n\to\infty} -|\sin(4/n)| = 0$. Therefore $\lim_{n\to\infty} (-1)^n \sin(4/n) = 0$.

(17) Consider the sequence

$$a_n = \frac{(3n-1)!}{(3n+1)!}.$$

Describe the behaviour of the sequence.

Solution: Note that
$$a_n = \frac{1}{3n(3n+1)}$$
. Thus, for $n \ge 1$,
 $a_n = \frac{1}{3n(3n+1)} \ge \frac{1}{3(n+1)(3(n+1)+1)} = a_{n+1}$

Hence $\{a_n\}$ is monotone decreasing for all n. Moreover

$$0 \le a_n = \frac{1}{3n(3n+1)} \le 1$$
, for all $n \ge 1$.

So $\{a_n\}$ is both bounded above and bounded below.

By Monotone Convergence Theorem, $\{a_n\}$ converges. Indeed,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{3n(3n+1)} = 0.$$