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1. Let f(x) = |x|3 on [−2, 1].

(a) Is Lagrange’s mean value theorem applicable to f on the interval [−2, 1]?

(b) If your answer to part (a) is yes, find all possible values c ∈ (−2, 1), such that

f(1)− f(−2)

1− (−2)
= f ′(c).

Solution

(a) Note that

f(x) =


x3 if 0 < x ≤ 1

0 if x = 0

−x3 if − 2 ≤ x < 0.

Note that f is polynomial on (−2, 0) and (0, 1), hence f is differentiable on
(−2, 0) ∪ (0, 1) with

f ′(x) =

{
3x2 if 0 < x < 1

−3x2 if − 2 < x < 0.

Note that

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

h3 − 0

h
= lim

h→0+
h2 = 0

and

lim
h→0−

f(h)− f(0)

h
= lim

h→0−

−h3 − 0

h
= lim

h→0−
−h2 = 0,

hence,

lim
h→0

f(h)− f(0)

h

exists and equals to 0, which implies f is differentiable at 0 with f ′(0) = 0.
Then, since f is differentiable on (−2, 1), we must have f is continuous on
(−2, 1). Note that

lim
x→1

f(x) = lim
x→1

x3 = 1 = f(1)

and

lim
x→−2

f(x) = lim
x→−2

−x3 = 8 = f(2).

Hence, f is continuous on [−2, 1]. Therefore, we can apply Lagrange’s mean
value theorem to f on [−2, 1].

(b) Note that

f(1)− f(−2)

1− (−2)
=

1− 8

3
=
−7

3
< 0,

by the definition of f ′, since x2 must be non-negative, so the choice of c need to

be in (−2, 0), hence −3c2 =
−7

3
, that is c = −

√
7

3
.



2. By using Lagrange’s mean value theorem, or otherwise, show that

(a)
x

1 + x
< ln(1 + x) < x for x > 0;

(b) nyn−1(x− y) < xn − yn < nxn−1(x− y) for n > 1 and 0 < y < x.

Solution

(a) Fixed any x > 0 (that means the value of x will NOT be change), define
f : [1, 1 + x]→ R by

f(w) = lnw

for any w ∈ [1, 1 + x]. Note that f is a logarithm function on [1, 1 + x] and
hence continuous on [1, 1 + x] and differentiable on (1, 1 + x) with

f ′(w) =
1

w

for any w ∈ (1, 1 + x). Using Lagrange’s mean value theorem, there exist some
ξ ∈ (1, 1 + x), such that

f ′(ξ) =
f(1 + x)− f(x)

1 + x− 1
,

that is,

1

ξ
=

ln(1 + x)

x
.

Since 1 < ξ < 1 + x, we have
1

1 + x
<

1

ξ
< 1, and hence

1

1 + x
<

ln(1 + x)

x
< 1,

and since x > 0, we finally have

x

1 + x
< ln(1 + x) < x.

(b) Fixed any n > 1 and x, y > 0 with x > y, define f : [y, x]→ R by

f(w) = wn

for any w ∈ [y, x]. Note that f is a polynomial on [y, x] and hence continuous
on [y, x] and differentiable on (x, y) with

f ′(w) = nwn−1

for any w ∈ (y, x). Using Lagrange’s mean value theorem, there exist some
ξ ∈ (y, x), such that

f ′(ξ) =
f(x)− f(y)

x− y
,



that is,

nξn−1 =
xn − yn

x− y
.

Since y < ξ < x and n− 1 > 0, we have nyn−1 < nξn−1 < nxn−1, and hence

nyn−1 <
xn − yn

x− y
< nxn−1,

and since x− y > 0, we finally have

nyn−1(x− y) < xn − yn < nxn−1(x− y).



3. Let 0 < a < b <
π

2
. Prove that there exists a < ξ < b such that

ln
(cos a

cos b

)
= (b− a) tan ξ.

Solution

Fixed any 0 < a < b <
π

2
, define f : [a, b]→ R by

f(x) = ln cosx

for any x ∈ [a, b]. Note that cosx is continuous on [a, b], differentiable on (a, b) and

cos b < cosx < cos a

for 0 < a < x < b <
π

2
. Moreover, ln x is continuous on [cos b, cos a] and differen-

tiable on (cos b, cos a).

Hence, f is continuous on [a, b] and differentiable on (a, b) with

f ′(x) =
(cosx)′

cosx
= − tanx

for any x ∈ (a, b).

Using Lagrange’s mean value theorem, there exist some ξ ∈ (a, b), such that

f ′(ξ) =
f(a)− f(b)

a− b
,

that is,

− tan ξ =
ln cos a− ln cos b

a− b
.

Since lnx− ln y = ln(x
y
), we have ln cos a− ln cos b = ln

(cos a

cos b

)
, and hence

ln
(cos a

cos b

)
= (b− a) tan ξ.

4. Let f(x) =
sin x

x
for x > 0. Compute f ′(x). Hence, or otherwise, show that

x sin y > y sinx whenever 0 < y < x ≤ π.

Solution

By quotient rule, we have

f ′(w) =
w cosw − sinw

w2

for any w > 0. Since w2 is non-negative, to study the sign of f ′, it suffices to study
the sign of

g(w) = w cosw − sinw.



Note that

g′(w) = −w sinw + cosw − cosw = −w sinw

and hence g′(w) < 0 for any w ∈ (0, π), that is g is strictly decreasing on (0, π).
Note that g is still continuous at w = 0 and w = π, so we have

g(w) < g(0) = 0

for any w ∈ (0, π]. Therefore,

f ′(w) =
g(w)

w2
< 0

for any w ∈ (0, π]. Thus, f is strictly decreasing on (0, π]. If 0 < y < x ≤ π, then

f(x) < f(y)

which implies

sinx

x
<

sin y

y
.

Since x, y > 0, we finally have

y sinx < x sin y.



5. Evaluate the following limits.

(a) lim
x→0

sin−1 x− tan−1 x

x3

(b) lim
x→0

logtan x(tan 2x)

(c) lim
x→0+

tanx ln sinx

(d) lim
x→1

(
1

lnx
− x

x− 1

)

(e) lim
x→+∞

e1+lnx

ln(1 + ex)

Solution

(a) We compute the Taylor series of sin−1 x and tan−1 x at x = 0 to the third
order:

(sin−1)′(x) = (1− x2)−1
2

(sin−1)′′(x) = x(1− x2)−3
2

(sin−1)′′′(x) = (1 + 2x2)(1− x2)−5
2

(tan−1)′(x) = (1 + x2)−1

(tan−1)′′(x) = −2x(1 + x2)−2

(tan−1)′′′(x) = 2(3x2 − 1)(1 + x2)−3

So the Taylor series are

sin−1(x) = x+
x3

6
+O(x4)

and

tan−1(x) = x− x3

3
+O(x4)

Hence the limit is

lim
x→0

sin−1 x− tan−1 x

x3
= lim

x→0

(x+ 1
6
x3 +O(x4))− (x− 1

3
x3 +O(x4))

x3

= lim
x→0

1
2
x3 +O(x4)

x3

=
1

2

(b)

lim
x→0

logtanx(tan 2x) = lim
x→0

ln tan 2x

ln tanx

= lim
x→0

(ln tan 2x)′

(ln tanx)′

= lim
x→0

2
tanx cos2 x

tan 2x cos2 2x

= lim
x→0

2
sin 2x

sin 4x

= lim
x→0

sin 2x

2x
lim
x→0

4x

sin 4x
= 1



(c)

lim
x→0+

tanx ln sinx = lim
x→0+

ln sinx

cotx

= lim
x→0+

(ln sinx)′

(cotx)′

= lim
x→0+

1
sinx

cosx

− csc2 x

= lim
x→0+

− sinx cosx = 0

(d)

lim
x→1

(
1

lnx
− x

x− 1

)
= lim

x→1

x− 1− lnx

(x− 1) lnx
− 1

= lim
x→1

(x− 1− lnx)′

((x− 1) lnx)′
− 1

= lim
x→1

1− 1
x

lnx+ x−1
x

− 1

= lim
x→1

x− 1

x lnx+ x− 1
− 1

= lim
x→1

(x− 1)′

(x lnx+ x− 1)′
− 1

= lim
x→1

1

lnx+ 1 + 1
− 1

= −1

2

(e)

lim
x→+∞

e1+lnx

ln(1 + ex)
= lim

x→+∞

xe

ln(1 + ex)

= lim
x→+∞

(xe)′

(ln(1 + ex))′

= lim
x→+∞

e
1

1+ex
ex

= lim
x→+∞

e(1 + e−x) = e



6. Evaluate the following limits.

(a) lim
x→0

(
sinx

x

) 1
x2

(b) lim
x→1

x
2x
x−1

(c) lim
x→0

(1 + x)x − 1

x2

(d) lim
x→+∞

(
x2 − 2x+ 1

x2 − 4x+ 2

)x
Solution

(a)

lim
x→0

1

x2
ln

sinx

x
= lim

x→0

(ln sinx
x

)′

(x2)′

= lim
x→0

x
sinx

( cosx
x
− sinx

x2
)

2x

=
1

2
lim
x→0

x cosx− sinx

x2 sinx

=
1

2
lim
x→0

(x cosx− sinx)′

(x2 sinx)′

=
1

2
lim
x→0

−x sinx

2x sinx+ x2 cosx

=
1

2
lim
x→0

−1

2 + x
tanx

=
1

2

−1

2 + 1
= −1

6

So

lim
x→0

(
sinx

x

) 1
x2

= e
lim
x→0

1
x2

ln sin x
x

= e
−1
6

(b)

lim
x→1

2x

x− 1
lnx = 2 lim

x→1

lnx

1− 1
x

= 2 lim
x→1

(lnx)′

(1− 1
x
)′

= 2 lim
x→1

1
x
1
x2

= 2

So

lim
x→1

x
2x
x−1 = e

lim
x→1

2x
x−1

lnx

= e2



(c) We compute the Taylor series of f(x) = (1 + x)x = ex ln(1+x) at x = 0 up to x2:

f ′(x) = ex ln(1+x)(ln(1 + x) + 1− 1

1 + x
)

f ′′(x) = ex ln(1+x)(ln(1 + x) + 1− 1

1 + x
)2 + ex ln(1+x)

x+ 2

(1 + x)2

As f(0) = e0 ln 1 = 1, f ′(0) = e0 ln 1(ln 1 + 1− 0
1+0

) = 0, f ′′(0) = e0 ln 1(ln 1 + 1−
0

1+0
)2 + e0 ln 1 0+2

(1+0)2
= 2, we have (1 + x)x = 1 + x2 +O(x3), so

lim
x→0

(1 + x)x − 1

x2
= lim

x→0

x2 +O(x3)

x2
= 1

(d)

lim
x→+∞

x ln
(x− 1)2

x2 − 4x+ 2
= lim

x→+∞

ln (x−1)2
x2−4x+2

x−1

= lim
x→+∞

(ln (x−1)2
x2−4x+2

)′

(x−1)′

= lim
x→+∞

2

−x−2
−x

(x− 1)(x2 − 4x+ 2)

= lim
x→+∞

2x3

(x− 1)(x2 − 4x+ 2)
= 2

So

lim
x→+∞

(
x2 − 2x+ 1

x2 − 4x+ 2

)x
= e

lim
x→+∞

x ln
(x−1)2

x2−4x+2 = e2



7. Find the x-intercepts, y-intercepts, asymptotes if there is any and sketch the graphs
of the following functions.

(a) y =
x+ 5

x− 2

(b) y =
x2 − 2

x− 1

(c) y = |4 + 3x− x2|

(d) y = x|x+ 2|

(e) y =

∣∣∣∣7− 2x

x+ 3

∣∣∣∣
(f) y =

1

|x2 − 4|

Solution

(a) The x-intercept is at where y = x+5
x−2 = 0, so the x-intercept is (−5, 0).

The y-intercept is at where x = 0, so the y-intercept is (0, 0+5
0−2) = (0,−5

2
).

At x = 2, the denominator becomes 0, so x = 2 is a vertical asymptote.
Since limx→±∞

y(x)
x

= 0 and limx→±∞ y(x) = 1, y = 1 is a horizontal asymptote.

(b) The x-intercept is at where y = x2−2
x−1 = 0, so the x-intercepts are (

√
2, 0) and

(−
√

2, 0).
The y-intercept is at where x = 0, so the y-intercept is (0, 0

2−2
0−1 ) = (0, 2).

At x = 1, the denominator becomes 0, so x = 1 is a vertical asymptote.
Since limx→±∞

y(x)
x

= 1 and limx→±∞ y(x) − x = 1, y = x + 1 is an oblique
asymptote.

(c) The x-intercept is at where y = |4+3x−x2| = 0, so the x-intercepts are (−1, 0)
and (4, 0).
The y-intercept is at where x = 0, so the y-intercept is (0, |4+3·0−02|) = (0, 4).

Since the function has no singularity and limx→±∞
y(x)
x

= ±∞, the function has
no asymptote.

(d) The x-intercept is at where y = x|x+ 2| = 0, so the x-intercepts are (0, 0) and
(−2, 0).
The y-intercept is at where x = 0, so the y-intercept is (0, 0 · |0 + 2|) = (0, 0).

Since the function has no singularity and limx→±∞
y(x)
x

= +∞, the function
has no asymptote.

(e) The x-intercept is at where y =
∣∣7−2x
x+3

∣∣ = 0, so the x-intercept is (7
2
, 0).

The y-intercept is at where x = 0, so the y-intercept is (0,
∣∣7−2·0

0+3

∣∣) = (0, 7
3
).

At x = −3, the denominator becomes 0, so x = −3 is a vertical asymptote.
Since limx→±∞

y(x)
x

= 0 and limx→±∞ y(x) = 2, y = 2 is a horizontal asymptote.

(f) The x-intercept is at where y = 1
|x2−4| = 0, so the function has no x-intercept.

The y-intercept is at where x = 0, so the y-intercept is (0, 1
|02−4|) = (0, 1

4
).

At x = −2 and at x = 2, the denominator becomes 0, so x = 2 and x = −2
are vertical asymptotes.
Since limx→±∞

y(x)
x

= 0 and limx→±∞ y(x) = 0, y = 0 is a horizontal asymptote.



Figure 1: The graphs of the functions for question 7. Asymptotes, if they exist, are also
drawn.



8. For each of the following functions f(x), find

• f ′(x) and f ′′(x).

• range of values of x for which f(x) is increasing.

• asymptotes of y = f(x).

• all relative extremum points

Then sketch the graph of y = f(x).

(a) f(x) =
x

(x− 2)2

(b) f(x) =
x2 + 5x+ 7

x+ 2

(c) f(x) =
x2

x2 − 2x+ 2

(d) f(x) = x
2
3 − 1

Solution

(a)

f ′(x) =
d

dx

x

(x− 2)2
=

1

(x− 2)2
− 2x

(x− 2)3
= − x+ 2

(x− 2)3

f ′′(x) =
d

dx
− x+ 2

(x− 2)3
= −

(
1

(x− 2)3
− 3(x+ 2)

(x− 2)4

)
=

2x+ 8

(x− 2)4

f is differentiable on the domain (−∞, 2) ∪ (2,∞), and f ′(x) > 0 if and only
if −2 < x < 2. So f is increasing on [−2, 2).

Since when x = 2, the denominator becomes 0, so x = 2 is a vertical asymptote.
As limx→±∞

f(x)
x

= 0 and limx→±∞ f(x) = 0, y = 0 is a horizontal asymptote.

The only critical point of f(x) is x = −2, at which f ′′(−2) = 1
64
> 0, so x = −2

is the only relative extremum and is a relative minimum.

(b)

f ′(x) =
d

dx

x2 + 5x+ 7

x+ 2
=

2x+ 5

x+ 2
−x

2 + 5x+ 7

(x+ 2)2
=
x2 + 4x+ 3

(x+ 2)2
=

(x+ 1)(x+ 3)

(x+ 2)2

f ′′(x) =
d

dx

x2 + 4x+ 3

(x+ 2)2
=

2x+ 4

(x+ 2)2
− (x2 + 4x+ 3)

−2

(x+ 2)3
=

2

(x+ 2)3

f is differentiable on the domain (−∞,−2) ∪ (−2,∞), and f ′(x) > 0 if and
only if x < −3 or −1 < x. Also, f(−3) = −1 < 3 = f(−1). So f is increasing
on (−∞,−3] ∪ [−1,∞)

Since when x = −2, the denominator becomes 0, so x = −2 is a vertical
asymptote.
As limx→±∞

f(x)
x

= 1 and limx→±∞ f(x) − x = 3, so y = x + 3 is an oblique
asymptote.

The only critical points are x = −1 and x = −3. Since f ′′(−1) = 2 > 0 and
f ′′(−3) = −2 < 0, so the only relative extrema are at x = −1 and x = −3,
where x = −1 is a relative minimum and x = −3 is a relative maximum.



(c)

f ′(x) =
d

dx

x2

x2 − 2x+ 2
=

2x

x2 − 2x+ 2
− x2(2x− 2)

(x2 − 2x+ 2)2
= − 2x(x− 2)

(x2 − 2x+ 2)2

f ′′(x) =
−4x+ 4

(x2 − 2x+ 2)2
− 2(−2x2 + 4x)(2x− 2)

(x2 − 2x+ 2)3
=

4(x− 1)(x2 − 2x− 2)

(x2 − 2x+ 2)3

f is differentiable on the domain (−∞,∞), and f ′(x) > 0 if and only if 0 <
x < 2, so f is increasing on [0, 2].

As limx→±∞
f(x)
x

= 0 and limx→±∞ f(x) = 1, y = 1 is a horizontal asymptote.

The critical points of f are x = 0 and x = 2. Since f ′′(0) = 1 > 0 and
f ′′(2) = −1 < 0, so the only relative extrema are x = 0 and x = 2, where
x = 0 is a relative minimum and x = 2 is a relative maximum.

(d)

f ′(x) =
d

dx
(x

2
3 − 1) =

2

3
x
−1
3 =

2

3 3
√
x

f ′′(x) =
d

dx

2

3
x
−1
3 = −2

9
x
−4
3 = − 2

9
3
√
x4

f is differentiable on (−∞, 0) ∪ (0,∞), and f ′(x) > 0 if and only if x > 0. So
f is increasing on [0,∞)

Since limx→±∞
f(x)
x

= 0 but limx→±∞ f(x) does not exist. So f has no asymp-
tote.

The only critical points of f are x = 0 as f is not differentiable at x = 0 and
f ′(x) 6= 0 on (−∞, 0)∪(0,∞). Since for x 6= 0, f(x) = −1+

3
√
x2 ≥ −1 = f(0),

x = 0 is the only relative extremum and is a relative minimum.



Figure 2: The graphs of the functions for question 8. Asymptotes, if they exist, are also
drawn.



9. For each of the following functions f(x), find f(0), f ′(0), f ′′(0) and f ′′′(0) and the
Taylor series up to the term in x3 of f(x) about the point x = 0.

(a) f(x) = ln cosx (b) f(x) = ex sinx

Solution

(a) f(0) = ln cos 0 = 0

f ′(x) =
d

dx
ln cosx =

1

cosx
(− sinx) = − tanx

So f ′(0) = − tan 0 = 0

f ′′(x) =
d

dx
− tanx = − sec2 x

So f ′′(0) = − sec2 0 = −1

f ′′′(x) =
d

dx
− sec2 x =

2

cos3
(− sinx) = −2 tanx sec2 x

So f ′′′(0) = 0

So the Taylor series of f(x) = ln cosx about x = 0 up to x3 is

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′′(0)

6
x3 +O(x4) = −1

2
x2 +O(x4)

(b) f(0) = e0 sin 0 = 0

f ′(x) =
d

dx
ex sinx = ex sinx+ ex cosx = ex(sinx+ cosx)

So f ′(0) = e0(sin 0 + cos 0) = 1

f ′′(x) =
d

dx
ex(sinx+ cosx) = ex(sinx+ cosx) + ex(cosx− sinx) = 2ex cosx

So f ′′(0) = 2e0 cos 0 = 2

f ′′′(0) =
d

dx
2ex cosx = 2(ex cosx− ex sinx) = 2ex(cosx− sinx)

So f ′′′(0) = 2e0(cos 0− sin 0) = 2

So the Taylor series of f(x) = ex sinx about x = 0 up to x3 is

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′′(0)

6
x3 +O(x4) = x+ x2 +

1

3
x3 +O(x4)



10. Find the Taylor series up to the term in (x− c)3 of the functions about x = c.

(a)
1

1 + x
; c = 1.

(b)
2− x
3 + x

; c = 1.

(c)
x

(x− 1)(x− 2)
; c = 0.

(d) cos x; c = π
4
.

(e) sin2 x; c = 0

(f) lnx; c = e.

(g) 3x; c = 0.

(h)
√

2 + x; c = 1.

(i)
1√

7− 3x
; c = 1.

Solution

(a) Let f(x) = 1
1+x

. Then f(c) = 1
1+c

= 1
2
, f ′(c) = −1

(1+c)2
= −1

4
, f ′′(c) = 2

(1+c)3
= 1

4
,

f ′′′(c) = −6
(1+c)4

= −3
8
.

So 1
1+x

= f(x) = f(c) + f ′(c)(x− c) + f ′′(c)
2

(x− c)2 + f ′′′(c)
6

(x− c)3 +O((x− c)4)
= 1

2
− 1

4
(x− 1) + 1

8
(x− 1)2 − 1

16
(x− 1)3 +O((x− 1)4)

(b) Let f(x) = 2−x
3+x

= −1 + 5
3+x

. Then f(c) = −1 + 5
3+c

= 1
4
, f ′(c) = −5

(3+c)2
= − 5

16
,

f ′′(c) = 10
(3+c)3

= 5
32

, f ′′′(c) = −30
(3+c)4

= − 15
128

.

So 2−x
3+x

= f(x) = f(c) + f ′(c)(x− c) + f ′′(c)
2

(x− c)2 + f ′′′(c)
6

(x− c)3 +O((x− c)4)
= 1

4
− 5

16
(x− 1) + 5

64
(x− 1)2 − 5

256
(x− 1)3 +O((x− 1)4)

(c) Let f(x) = x
(x−1)(x−2) . Then f(c) = 0

(0−1)(0−2) = 0, f ′(c) = − c2−2
(c−1)2(c−2)2 = 1

2
,

f ′′(c) = 2(c3−6c+6)
(c−1)3(c−2)3 = 3

2
, f ′′′(c) = −6(c4−12c2+24c−14)

(c−1)4(c−2)4 = 21
4

.

So x
(x−1)(x−2) = f(x) = f(c)+f ′(c)(x−c)+ f ′′(c)

2
(x−c)2+ f ′′′(c)

6
(x−c)3+O((x−c)4)

= 1
2
x+ 3

4
x2 + 7

8
x3 +O(x4)

(d) Let f(x) = cosx. Then f(c) = cos c =
√
2
2

, f ′(c) = − sin c = −
√
2
2

, f ′′(c) =

− cos c = −
√
2
2

, f ′′′(c) = sin c =
√
2
2

.

So cos x = f(x) = f(c)+f ′(c)(x−c)+ f ′′(c)
2

(x−c)2 + f ′′′(c)
6

(x−c)3 +O((x−c)4)
=
√
2
2
−
√
2
2

(x− π
4
)−

√
2
4

(x− π
4
)2 +

√
2

12
(x− π

4
)3 +O((x− π

4
)4)

(e) Let f(x) = sin2 x. Then f(c) = sin2 c = 0, f ′(c) = sin(2c) = 0, f ′′(c) =
2 cos(2c) = 2, f ′′′(c) = −4 sin(2c) = 0.

So sin2 x = f(x) = f(c)+f ′(c)(x−c)+ f ′′(c)
2

(x−c)2+ f ′′′(c)
6

(x−c)3+O((x−c)4)
= x2 +O(x4)

(f) Let f(x) = lnx. Then f(c) = ln c = 1, f ′(c) = 1
c

= 1
e
, f ′′(c) = − 1

c2
= − 1

e2
,

f ′′′(c) = 2
c3

= 2
e3

.

So lnx = f(x) = f(c) + f ′(c)(x− c) + f ′′(c)
2

(x− c)2 + f ′′′(c)
6

(x− c)3 +O((x− c)4)
= 1 + 1

e
(x− e)− 1

2e2
(x− e)2 + 1

3e3
(x− e)3 +O((x− e)4)

(g) Let f(x) = 3x. Then f(c) = 3c = 1, f ′(c) = 3c ln 3 = ln 3, f ′′(c) = 3c(ln 3)2 =
(ln 3)2, f ′′′(c) = 3c(ln 3)3 = (ln 3)3.

So 3x = f(x) = f(c) + f ′(c)(x− c) + f ′′(c)
2

(x− c)2 + f ′′′(c)
6

(x− c)3 +O((x− c)4)
= 1 + x ln 3 + (ln 3)2

2
x2 + (ln 3)3

6
x3 +O(x4)

(h) Let f(x) =
√

2 + x. Then f(c) =
√

2 + c =
√

3, f ′(c) = 1
2
(2 + c)

−1
2 =

√
3
6

,

f ′′(c) = −1
4
(2 + c)

−3
2 = −

√
3

36
, f ′′′(c) = 3

8
(2 + c)

−5
2 =

√
3

72
.



So
√

2 + x = f(x) = f(c)+f ′(c)(x−c)+ f ′′(c)
2

(x−c)2+ f ′′′(c)
6

(x−c)3+O((x−c)4)
=
√

3 +
√
3
6

(x− 1)−
√
3

72
(x− 1)2 +

√
3

432
(x− 1)3 +O((x− 1)4)

(i) Let f(x) = 1√
7−3x . Then f(c) = 1√

7−3c = 1
2
, f ′(c) = −1

2
(7 − 3c)

−3
2 = 3

16
,

f ′′(c) = 27
3

(7− 3x)
−5
2 = 27

128
, f ′′′(c) = 405

8
(7− 3x)

−7
2 = 405

1024
.

So 1√
7−3c = f(x) = f(c)+f ′(c)(x−c)+ f ′′(c)

2
(x−c)2+ f ′′′(c)

6
(x−c)3+O((x−c)4)

= 1
2

+ 3
16

(x− 1) + 27
256

(x− 1)2 + 135
2048

(x− 1)3 +O((x− 1)4)

Alternatively, by using the Taylor series of the elementary functions,

(a) 1
x+1

= 1
2

1
1+x−1

2

= 1
2

(
1− x−1

2
+ (x−1

2
)2 − (x−1

2
)3 +O((x− 1)4)

)
= 1

2
− 1

4
(x− 1) + 1

8
(x− 1)2 − 1

16
(x− 1)3 +O((x− 1)4)

(b) 2−x
3+x

= −1 + 5
4

1
1+x−1

4

= −1 + 5
4

(
1− x−1

4
+ (x−1

4
)2 − (x−1

4
)3 +O((x− 1)4)

)
= 1

4
− 5

16
(x− 1) + 5

64
(x− 1)2 − 5

256
(x− 1)3 +O((x− 4)2)

(c) x
(x−1)(x−2) = − 1

1−x
2

+ 1
1−x

= −
(
1 + x

2
+ (x

2
)2 + (x

2
)3 +O(x4)

)
+ (1 + x+ x2 + x3 +O(x4))

= 1
2
x+ 3

4
x2 + 7

8
x3 +O(x4)

(d) cos x = cos(x− π
4

+ π
4
) =

√
2
2

(
cos(x− π

4
)− sin(x− π

4
)
)

=
√
2
2

(
(1− (x−π

4
)2

2
+O((x− π

4
)4))− ((x− π

4
)− (x−π

4
)3

6
+O((x− π

4
)4))
)

=
√
2
2
−
√
2
2

(x− π
4
)−

√
2
4

(x− π
4
)2 +

√
2

12
(x− π

4
)3 +O((x− π

4
)4)

(e) sin2 x = 1
2
(1− cos(2x)) = 1

2
(1− (1− (2x)2

2
+O(x4)))

= x2 +O(x4)

(f) lnx = 1 + ln(1 + x−e
e

) = 1 +
(
x−e
e
− 1

2
(x−e

e
)2 + 1

3
(x−e

e
)3 +O((x− e)4)

)
= 1 + 1

e
(x− e)− 1

2e2
(x− e)2 + 1

3e3
(x− e)3 +O((x− e)4)

(g) 3x = ex ln 3 = 1 + x ln 3 + 1
2
(x ln 3)2 + 1

6
(x ln 3)3 +O(x4)

= 1 + x ln 3 + (ln)3

2
x2 + (ln 3)3

6
x3 +O(x4)

(h)
√

2 + x =
√

3(1 + x−1
3

)
1
2

=
√

3
(

1 + 1
2
x−1
3

+
1
2
( 1
2
−1)
2

(x−1
3

)2 +
1
2
( 1
2
−1)( 1

2
−2)

6
(x−1

3
)3 +O((x− 1)4)

)
=
√

3 +
√
3
6

(x− 1)−
√
3

72
(x− 1)2 +

√
3

432
(x− 1)3 +O((x− 1)4)

(i) 1√
7−3x = 1

2
(1− x−1

4/3
)
−1
2

= 1
2
(1− −1

2
x−1
4/3

+
−1
2
(−1

2
−1)

2
(x−1
4/3

)2 −
−1
2
(−1

2
−1)(−1

2
−2)

6
)(x−1

4/3
)3 +O((x− 1)4)

= 1
2

+ 3
16

(x− 1) + 27
256

(x− 1)2 + 135
2048

(x− 1)3 +O((x− 1)4)



11. Suppose y = f(x) is a function which satisfies y +
y3

3
= x.

(a) Show that
d2y

dx2
= − 2y

(1 + y2)3
.

(b) Find the Taylor series up to the term in x3 of f(x) about the point x = 0.

Solution

(a) Differentiate the equation implicitly:

dy

dx
+ y2

dy

dx
= 1

Then
dy

dx
=

1

1 + y2

Differentiate one more time yields:

d2y

dx2
+ 2y(

dy

dx
)2 + y2

d2y

dx2
= 0

Now

d2y

dx2
=−

2y( dy
dx

)2

1 + y2

=− 2y

(1 + y2)3

(b) Note that −d
2y

dx2
= 2y(

dy

dx
)3,

−d
3y

dx3
= 2(

dy

dx
)(
dy

dx
)3 + 2y · 3(

dy

dx
)2
d2y

dx2

= 2(
dy

dx
)4 + 6y(

dy

dx
)2
d2y

dx2

=
2

(1 + y2)4
− 6y

(1 + y2)2
2y

(1 + y2)3

=
2− 10y2

(1 + y2)5

Hence

f(0) +
f 3(0)

3
= f(0)(1 +

f 2(0)

3
) = 0 =⇒ f(0) = 0

f ′(0) =
1

1 + 02
= 1, f ′′(0) = − 2 · 0

(1 + 02)3
= 0, f ′′′(0) = − 2− 0

(1 + 0)5
= −2.

Therefore, the Taylor series of f(x) about the point x = 0 is given by

x− 1

3
x3 + · · ·



12. By considering appropriate Taylor series expansions, evaluate the limits below:

(a) lim
x→0

e2x − 1

ln(1 + x)

(b) lim
x→0

(
1

ln(1 + x)
+

1

ln(1− x)

) (c) lim
x→0

x(1− cosx)

1−
√

1− x3

(d) lim
x→0

tan3(3x)

x2 sinx

Solution

(a) Note e2x = 1 + 2x+ 2x2 + . . .

and ln(1 + x) = x− 1

2
x2 + . . .

Then

lim
x→0

e2x − 1

ln(1 + x)
= lim

x→0

1 + 2x+ 2x2 + · · · − 1

x− 1

2
x2 + . . .

= lim
x→0

2x+ 2x2 + . . .

x− 1

2
x2 + . . .

= lim
x→0

2 + 2x+ . . .

1− 1

2
x+ . . .

= 2

(b)

lim
x→0

( 1

ln(1 + x)
+

1

ln(1− x)

)
= lim

x→0

ln(1− x) + ln(1 + x)

ln(1 + x) ln(1− x)

= lim
x→0

ln(1− x2)
ln(1 + x) ln(1− x)

= lim
x→0

−x2 − x4

2
+ . . .

(x− x2

2
+
x3

3
− · · · )(−x− x2

2
− x3

3
+ . . . )

= lim
x→0

−x2 − x4

2
+ . . .

−x2 − 5

12
x4 + . . .

= lim
x→0

−1− x2

2
+ . . .

−1− 5

12
x2 + . . .

= 1

(c) Note

1− cosx = 1− (1− 1

2
x2 +

1

4!
x4 + . . . )

=
1

2
x2 − 1

4!
x4 + . . .

So

lim
x→0

x(1− cosx)

1−
√

1− x3
= lim

x→0

x(1− cosx)(1 +
√

1− x3)
1− (1− x3)

= lim
x→0

x(1− cosx)(1 +
√

1− x3)
x3



Note

lim
x→0

(1 +
√

1− x3) = 2,

and lim
x→0

x(1− cosx)

x3
= lim

x→0

1
2
x3 − 1

4!
x5 + . . .

x3
= lim

x→0

1
2
− 1

4!
x2 + . . .

1
=

1

2
.

=⇒ lim
x→0

x(1− cosx)

1−
√

1− x3
= 2 · 1

2
= 1

(d) Note

tanx = x+
1

3
x3 + . . .

tan(3x) = 3x+ 9x3 + . . .

sinx = x− 1

3!
x3 + . . .

So

lim
x→0

tan3(3x)

x2 sinx
= lim

x→0

(3x+ 9x3 + · · · )3

x2(x− 1

6
x3 + . . . )

= lim
x→0

27x3 + 243x5 + . . .

x3 − 1

6
x5 + . . .

= lim
x→0

27 + 243x2 + . . .

1− 1

6
x2 + . . .

= 27


