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1. Let f(x) = |x|3 on [−2, 1].

(a) Is Lagrange’s mean value theorem applicable to f on the interval [−2, 1]?

(b) If your answer to part (a) is yes, find all possible values c ∈ (−2, 1), such that

f(1)− f(−2)

1− (−2)
= f ′(c).

2. By using Lagrange’s mean value theorem, or otherwise, show that

(a)
x

1 + x
< ln(1 + x) < x for x > 0;

(b) nyn−1(x− y) < xn − yn < nxn−1(x− y) for n > 1 and 0 < y < x.

3. Let 0 < a < b <
π

2
. Prove that there exists a < ξ < b such that

ln
(cos a

cos b

)
= (b− a) tan ξ.

4. Let f(x) =
sin x

x
for x > 0. Compute f ′(x). Hence, or otherwise, show that

x sin y > y sinx whenever 0 < y < x ≤ π.

5. Evaluate the following limits.

(a) lim
x→0

sin−1 x− tan−1 x

x3

(b) lim
x→0

logtan x(tan 2x)

(c) lim
x→0+

tanx ln sinx

(d) lim
x→1

(
1

lnx
− x

x− 1

)

(e) lim
x→+∞

e1+lnx

ln(1 + ex)

6. Evaluate the following limits.

(a) lim
x→0

(
sinx

x

) 1
x2

(b) lim
x→1

x
2x
x−1

(c) lim
x→0

(1 + x)x − 1

x2

(d) lim
x→+∞

(
x2 − 2x+ 1

x2 − 4x+ 2

)x



7. Find the x-intercepts, y-intercepts, asymptotes if there is any and sketch the graphs
of the following functions.

(a) y =
x+ 5

x− 2

(b) y =
x2 − 2

x− 1

(c) y = |4 + 3x− x2|

(d) y = x|x+ 2|

(e) y =

∣∣∣∣7− 2x

x+ 3

∣∣∣∣
(f) y =

1

|x2 − 4|

8. For each of the following functions f(x), find

• f ′(x) and f ′′(x).

• range of values of x for which f(x) is increasing.

• asymptotes of y = f(x).

• all relative extremum points

Then sketch the graph of y = f(x).

(a) f(x) =
x

(x− 2)2

(b) f(x) =
x2 + 5x+ 7

x+ 2

(c) f(x) =
x2

x2 − 2x+ 2

(d) f(x) = x
2
3 − 1

9. For each of the following functions f(x), find f(0), f ′(0), f ′′(0) and f ′′′(0) and the
Taylor series up to the term in x3 of f(x) about the point x = 0.

(a) f(x) = ln cosx (b) f(x) = ex sinx

10. Find the Taylor series up to the term in (x− c)3 of the functions about x = c.

(a)
1

1 + x
; c = 1.

(b)
2− x
3 + x

; c = 1.

(c)
x

(x− 1)(x− 2)
; c = 0.

(d) cos x; c = π
4
.

(e) sin2 x; c = 0

(f) lnx; c = e.

(g) 3x; c = 0.

(h)
√

2 + x; c = 1.

(i)
1√

7− 3x
; c = 1.

11. Suppose y = f(x) is a function which satisfies y +
y3

3
= x.

(a) Show that
d2y

dx2
= − 2y

(1 + y2)3
.

(b) Find the Taylor series up to the term in x3 of f(x) about the point x = 0.



12. By considering appropriate Taylor series expansions, evaluate the limits below:

(a) lim
x→0

e2x − 1

ln(1 + x)

(b) lim
x→0

(
1

ln(1 + x)
+

1

ln(1− x)

) (c) lim
x→0

x(1− cosx)

1−
√

1− x3

(d) lim
x→0

tan3(3x)

x2 sinx


