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1. The function f is continuous at x = 0 and is defined for −1 < x < 1 by

f(x) =


2a
x

ln(1 + x) if − 1 < x < 0

b if x = 0
x2 cosx

1−
√
1−x2 if 0 < x < 1.

Determine the values of the constants a and b.

Solution

For f to be continuous at x = 0,

(a) lim
x→0+

f(x) = f(0)

lim
x→0+

x2 cosx

1−
√

1− x2

= lim
x→0+

x2 cosx(1 +
√

1− x2)
1− (1− x2)

= lim
x→0+

cosx(1 +
√

1− x2)
= 2

So b = 2.

(b) lim
x→0−

f(x) = f(0)

lim
x→0−

2a

x
ln(1 + x)

= lim
y→0−

2a

ey − 1
y (sub 1 + x = ey)

= 2a

= 2

So a = 1.

2. Determine whether the following functions are differentiable at x = 0.

(a) f(x) =

{
5− 2x, when x < 0

x2 − 2x+ 5, when x ≥ 0

(b) f(x) =

{
1 + 3x− x2, when x < 0

x2 + 3x+ 2, when x ≥ 0

(c) f(x) =

{
e−

1
x2 , when x 6= 0

0, when x = 0

(d) f(x) = | sinx|
(e) f(x) = x|x|

Solution



(a)

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

x2 − 2x+ 5− 5

x

= lim
x→0+

x− 2

= −2

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

5− 2x− 5

x− 0

= −2

Hence, f is differentiable at x = 0.
(b) Note that

lim
x→0+

f(x) = lim
x→0+

x2 + 3x+ 2

= 2

lim
x→0−

f(x) = lim
x→0−

1 + 3x− x2

= lim
x→0−

1 6= 2

Hence, f is not continuous at x = 0, thus not differentiable at x = 0.
(c)

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

e−
1
x2

x

= lim
y→∞

ye−y
2

(Let y =
1

x
)

= lim
y→∞

y

ey2

= lim
y→∞

1

2yey2
(L’Hopital)

= 0

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

e−
1
x2

x

= lim
y→−∞

ye−y
2

(Let y =
1

x
)

= lim
y→−∞

y

ey2

= lim
y→−∞

1

2yey2
(L’Hopital)

= 0



Hence, f is differentiable at x = 0.
(d)

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

| sinx| − 0

x

= lim
x→0+

sinx

x

= 1

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

| sinx| − 0

x

= lim
x→0−

− sinx

x

= −1 6= 1

Hence, f is not differentiable at x = 0.
(e)

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

x|x| − 0

x

= lim
x→0+

x2

x

= 0

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

x|x| − 0

x

= lim
x→0−

−x2

x

= 0

3. Let f(x) = |x|3.

(a) Find f ′(x) for x 6= 0.

(b) Show that f(x) is differentiable at x = 0.

(c) Determine whether f ′(x) is differentiable at x = 0.

Solution (a)

f ′(x) =

{
3x2, when x > 0;

−3x2, when x < 0.

(b) Note that

lim
h→0

|h|3 − 0

h− 0
= lim

h→0

|h|h2

h
= lim

h→0
|h|h = 0.



Hence f is differentiable at x = 0 with f ′(x) = 0.

(c) Note that, by (a) and (b),

lim
h→0+

f ′(h)− f ′(0)

h− 0
= lim

h→0+

3h2

h
= lim

h→0+
3h = 0.

lim
h→0−

f ′(h)− f ′(0)

h− 0
= lim

h→0−

−3h2

h
= lim

h→0−
−3h = 0.

Hence f ′(x) is differentiable at x = 0 with f ′′(0) = 0.

4. Let

f(x) =

(x− 2)2 sin

(
1

x− 2

)
, when x 6= 2;

0, when x = 2.

(a) Is f continuous on R?

(b) Is f differentiable on R?

(c) Is f ′ continuous on R?

Solution

(a) We only need to check whether f is continuous at x = 2.
Since,

lim
x→2

(x− 2)2 = 0,

and

−1 ≤ sin
1

x− 2
≤ 1

we have,

lim
x→2

(x− 2)2 sin
1

x− 2
= 0 = f(2)

so f is continuous at x = 2, and f is continuous on R.

(b) Similarly, we only need to check whether f is differentiable at x = 2. since(x−
2)2 sin

1

x− 2
is differentiable on x 6= 2.

By definition,

lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

h2 sin( 1
h
)

h
= lim

h→0
h sin(

1

h
)

Because
∣∣sin( 1

h
)
∣∣ ≤ 1, we have,

lim
h→0

h sin(
1

h
) = 0



So, f is differentiable at x = 2, moreover f ′(2) = 0. f is differentiable on R.

(c) According to (b), we have

f ′(x) =

2(x− 2) sin

(
1

x− 2

)
+ (−1) cos

(
1

x− 2

)
, when x 6= 2;

0, when x = 2.

However, lim
x→2

f ′(x) doesn’t exist, since

lim
x→2

cos

(
1

x− 2

)
doesn’t exist.
So f ′ is not continuous at x = 2.

5. Find natural domains of the following functions and differentiate them on their
natural domains. You are not required to do so from first principles.

(a) f(x) =
sin x

1 + cos x
.

(b) f(x) = (1 + tan2 x) cos2 x.

(c) f(x) = ln (ln (ln x))

(d) f(x) = ln | sin x|

Solution

(a)

1 + cos x = 0

cosx = −1

x = (2n− 1)π, n ∈ Z

Therefore, the natural domain is R \ {(2n− 1)π : n ∈ Z}.

f ′(x) =
(1 + cos x) cosx− sinx(− sinx)

(1 + cos x)2

=
cosx+ cos2 x+ sin2 x

(1 + cos x)2

=
cosx+ 1

(1 + cos x)2

=
1

1 + cos x



(b) tanx is well-defined on R \ { (2n−1)π
2

: n ∈ Z}. Therefore, this is also the natural
domain of f .
Note that f(x) = (1 + tan2 x) cos2 x = cos2 x+ sin2 x = 1. Hence, f ′(x) = 0.
(c)

lnx > 0 (1)

x > 1 (2)

ln(lnx) > 0 (3)

lnx > 1 (4)

x > e (5)

By considering the intersection of the intervals above, the natural domain is given
by (e,∞).

f ′(x) =
1

ln(lnx)
· 1

lnx
· 1

x

=
1

x lnx ln(lnx)

(d)

| sinx| > 0

sinx 6= 0

x 6= nπ, n ∈ Z

Therefore, the natural domain of f is R \ {nπ : n ∈ Z}. Note that
d

dx
(ln |x|) =

1

x
for x 6= 0. Therefore,

f ′(x) =
1

sinx
· cosx

= cotx

6. Let f : R→ R be a function satisfying

f(x+ y) = f(x)f(y) for all x, y ∈ R.

Suppose f is differentiable at x = 0, with f ′(0) = a. Show that f is differentiable
at every x ∈ R, and find f ′(x) in terms of a and f(x).

Solution
Let x = y = 0, we have

f(0) = [f(0)]2.

Hence f(0) = 0 or 1.
Case 1: f(0) = 0.
Let y = 0, we have, for any x ∈ R

f(x) = f(x)f(0) = 0.



So, f(x) ≡ 0 for all x ∈ R. In this case, f is differentiable at every x ∈ R, and
f ′(x) ≡ 0.
Case 2: f(0) = 1
Since f is differentiable at x = 0, we have

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

f(h)− 1

h
= a.

Now we show f is differentiable for all x.
By definition,

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(h)f(x)− f(x)

h

= f(x)lim
h→0

f(h)− 1

h
= f(x)f ′(0)

= af(x).

Hence, f is differentiable for all x, and f ′(x) = af(x).

7. Find
dy

dx
if

(a) x2 + y2 = exy

(b) x3y + sinxy2 = 4

(c) y = tan−1
√
x

(d) y = 3sinx

(e) y = xlnx

(f) y = xx
x

Solution

Find
dy

dx
if

(a) x2 + y2 = exy

2x+ 2y
dy

dx
=

(
y + x

dy

dx

)
exy

dy

dx
=
yexy − 2x

2y − xexy

(b) x3y + sinxy2 = 4

3x2y + x3
dy

dx
+

(
y2 + 2xy

dy

dx

)
cosxy2 = 0

dy

dx
=
−3x2y − y2 cosxy2

x3 + 2xy cosxy2



(c) y = tan−1
√
x

tan y =
√
x

sec2 y
dy

dx
=

1

2
√
x

dy

dx
=

cos2 y

2
√
x

=
1

2
√
x(1 + x)

(d) y = 3sinx

dy

dx
= 3sinx ln 3 cos x

(e) y = xlnx

ln y = (lnx)2

1

y

dy

dx
=

2 lnx

x

dy

dx
=

2y lnx

x
=

2xlnx lnx

x

(f) y = xx
x

ln y = xx lnx

ln ln y = x lnx+ ln lnx
1

y ln y

dy

dx
= lnx+ 1 +

1

x lnx

dy

dx
= (y ln y)

(
lnx+ 1 +

1

x lnx

)
= xx

x · xx lnx

(
lnx+ 1 +

1

x lnx

)

8. Find
d2y

dx2
if

(a) y = ln tan x

(b) y = sin−1
√

1− x2

(c) x2 + y2 = 1

Solution
(a)

dy

dx
=

1

tanx
· sec2 x =

cosx

sinx
· 1

cos2 x
=

1

sinx cosx
=

2

sin 2x
= 2 csc(2x)

d2y

dx2
= −4 csc(2x) cot(2x)

(b)
dy

dx
=

1√
1− (

√
1− x2)2

· −2x

2
√

1− x2
= − x√

x2 − x4

d2y

dx2
= −

√
x2 − x4 − x · 2x−4x3

2
√
x2−x4

x2 − x4
= −x

2 − x4 − x(x− 2x3)

(x2 − x4) 3
2

= − x4

(x2 − x4) 3
2



(c)

2x+ 2y
dy

dx
= 0

dy

dx
= −x

y

d2y

dx2
= −

y − x dy
dx

y2
= −

y − x(−x
y
)

y2
= −x

2 + y2

y3

9. Find the n-th derivative of the following functions for all positive integers n.

(a) f(x) = (ex + e−x)2, x ∈ R

(b) f(x) =
1

1− x2
, x ∈ (−1, 1)

(c) f(x) = sin x cos x, x ∈ R
(d) f(x) = cos2 x, x ∈ R

(e) f(x) =
x2

ex
, x ∈ R

Solution

(a) Simplify f(x) first,

f(x) = (ex + e−x)2 = e2x + 2 + e−2x.

Hence,

f (n)(x) = 2ne2x + (−2)ne−2x.

(b) Process the partial fraction for f(x). Suppose

f(x) =
A

1 + x
+

B

1− x
,

where A,B is a constant, then we have

1

1− x2
=

(B − A)x+ (B + A)

1− x2
,

by comparing the coefficients, we have{
B + A = 1,

B − A = 0.



Hence, A = B =
1

2
, and

f(x) =
1

2

(
1

1 + x
+

1

1− x

)
.

Therefore,

f (n)(x) =
1

2

[
(−1)n

n!

(1 + x)n+1
+

n!

(1− x)n+1

]
.

(c) By double angle formula,

f(x) = sinx cosx =
1

2
sin 2x.

Hence,

f (n)(x) =


2n−1 sin 2x if n = 4k for some k ∈ N,
2n−1 cos 2x if n = 4k + 1 for some k ∈ N,
−2n−1 sin 2x if n = 4k + 2 for some k ∈ N,
−2n−1 cos 2x if n = 4k + 3 for some k ∈ N.

(d) By double angle formula,

f(x) = cos2 x =
1

2
(1 + cos 2x).

Hence,

f (n)(x) =


2n−1 cos 2x if n = 4k for some k ∈ N,
−2n−1 sin 2x if n = 4k + 1 for some k ∈ N,
−2n−1 cos 2x if n = 4k + 2 for some k ∈ N,
2n−1 sin 2x if n = 4k + 3 for some k ∈ N.

(e) Note that

f(x) =
x2

ex
= x2e−x = g(x)h(x)

where g(x) = x2, h(x) = e−x. Using Leibniz Rule (proved by mathematical induc-
tion and product rule),

f (n)(x) =
n∑
k=0

(
n

k

)
g(k)(x)h(n−k)(x).

Note that g′(x) = 2x, g′′(x) = 2 and g(k)(x) = 0 for all k ≥ 3. Hence,

f (n)(x) =

(
n

0

)
g(x)h(n)(x) +

(
n

1

)
g′(x)h(n−1)(x) +

(
n

2

)
g′′(x)h(n−2)(x)

= (−1)nx2e−x + (−1)n+12nxe−x + (−1)nn(n− 1)e−x.



10. (a) If xy = yx, where x, y > 0, show that

dy

dx
=
xy ln y − y2

xy ln x− x2

(b) Using implicit or inverse differentiation, show that

d

dx
arcsinx =

1√
1− x2

for x ∈ (−1, 1).

(c) Let f(x) = arctan |x| for x ∈ R. Find all x ∈ R such that f is differentiable at
x, and find f ′(x) for all such x.

Solution
(a) Take logarithm, and then differentiate both sides with respect to x:

d

dx
(y lnx) =

d

dx
(x ln y)

dy

dx
(lnx) +

y

x
= ln y +

x

y

dy

dx
dy

dx
(xy lnx) + y2 = xy ln y + x2

dy

dx
dy

dx
=

xy ln y − y2

xy ln x− x2
.

(b) Let y = arcsinx. Then x = sin y, for y ∈ (−π/2, π/2).

dx

dy
= cos y =

√
1− sin2 y.

dy

dx
=

1√
1− sin2 y

=
1√

1− x2
.

(c) Suppose x > 0. Let y = arctanx. Then x = tan y, for y ∈ (0, π/2).

dx

dy
=

1

cos2 y
=

sin2 y + cos2 y

cos2 y
= 1 + tan2 y.

dy

dx
=

1

1 + tan2 y
=

1

1 + x2
.

Hence f is differentiable for x > 0 with f ′(x) = 1
1+x2

.
By similar arguments, we can prove that f is differentiable for x < 0 with f ′(x) =
− 1

1+x2
.

Now we prove that f is not differentiable at x = 0. By inverse differentiation, we
know that g(x) = arctan x is differentiable at x = 0 with g′(0) = 1.
Hence f is not differentiable at x = 0 by noting the following facts.

lim
h→0+

f(h)− f(0)

h− 0
= lim

h→0+

arctanh

h
= g′(0) = 1.

lim
h→0−

f(h)− f(0)

h− 0
= lim

h→0−

arctan(−h)

h
= lim

h→0−

− arctanh

h
= −g′(0) = −1.



11. The chain rule says
(f ◦ g)′(x) = f ′(g(x)) · g′(x),

or equivalently,
dy

dx
=
dy

du
· du
dx
,

where y = f(u) and u = g(x).

(a) Give examples to show

(f ◦ g)′′(x) 6= f ′′(g(x)) · g′′(x),

or equivalently,
d2y

dx2
6= d2y

du2
· d

2u

dx2
,

where
d2y

dx2
denotes the second derivative of y = f(x).

(b) Prove
(f ◦ g)′′(x) = f ′′(g(x)) · (g′(x))2 + f ′(g(x)) · g′′(x).

Solution

(a) Let y = u2 and u = x.

Then y = x2.
dy

dx
= 2x

d2y

dx2
= 2

d2u

dx2
= 0

d2y

du2
· d

2u

dx2
= 0

(b) Prove
(f ◦ g)′′(x) = f ′′(g(x)) · (g′(x))2 + f ′(g(x)) · g′′(x).

Solution

y = f(u) and u = g(x).
dy

dx
=
dy

du
· du
dx

d

dx

dy

dx

=
d

dx

(
dy

du
· du
dx

)



=
d

dx

(
dy

du

)
· du
dx

+
dy

du
· d

2u

dx2

=
d2y

du2

(
du

dx

)2

+
dy

du
· d

2u

dx2

12. (a) Suppose a, b > 0 are constants, and

y =
1

ab
arctan

(
b

a
tan x

)

for x ∈
(
−π

2
,
π

2

)
. Express

dy

dx
as a function of sinx and cos x.

(b) Suppose a, b > 0 are constants, and

y = ln

∣∣∣∣a+ b tan x

a− b tan x

∣∣∣∣
for x ∈

(
−π

2
,
π

2

)
\
{
± arctan

a

b

}
. Express

dy

dx
as a function of sinx and cosx.

Solution
(a)

dy

dx
=

1

ab

1

1 + ( b
a

tanx)2
· b
a

sec2 x =
1

a2 cos2 x+ b2 sin2 x

(b) Note that

(ln |x|)′ = 1

x
for x 6= 0

and

y = ln(|a cosx+ b sinx

a cosx− b sinx
|) for x ∈

(
−π

2
,
π

2

)
\
{
± arctan

b

a

}
Hence

dy

dx
= (

a cosx− b sinx

a cosx+ b sinx
)

× (
(a cosx− b sinx)(−a sinx+ b cosx)− (a cosx+ b sinx)(−a sinx− b cosx)

(a cosx− b sinx)2
)

=
2ab

a cos2 x− b sin2 x



(a) 2a (b) 2b

(c) 2c (d) 2d

(e) 2e

Figure 1: Graph of Q2



Figure 2: graph of f

Figure 3: graph of f ′

Figure 4: graph of f ′′



(a) 5a (b) 5b

(c) 5c (d) 5d

Figure 5: Graph of Q5


