THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010 University Mathematics 2020-2021 Term 1 Homework Assignment 1 Solution of Homework Assignment 1

If you spots any errors/typos, please email us at math1010@math.cuhk.edu.hk

1. Determine the limit of each of the following sequences, or show that the sequence diverges. You may make use of the limit laws and theorems covered in class.

(a)
$$a_n = \frac{3n-7}{n+2} - \left(\frac{4}{5}\right)^n$$
 for $n \ge 1$.
(b) $a_n = \sqrt{n}(\sqrt{n+4} - \sqrt{n})$ for $n \ge 1$.
(c) $a_n = \frac{7^n}{n!}$ for $n \ge 1$.
(d) $a_n = \frac{\sin n^2}{n}$ for $n \ge 1$.
(e) $a_n = \frac{n}{n+n^{1/n}}$ for $n \ge 1$.
(f) $a_n = \left(3 + \frac{2}{n^2}\right)^{1/3}$ for $n \ge 1$.

Solutions:

(a)

$$a_n = \frac{3n-7}{n+2} - \left(\frac{4}{5}\right)^n \text{ for } n \ge 1$$
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left[\frac{3n-7}{n+2} - \left(\frac{4}{5}\right)^n\right]$$
$$= \lim_{n \to \infty} \left[\frac{3-\frac{7}{n}}{1+\frac{2}{n}} - \left(\frac{4}{5}\right)^n\right]$$
$$= \frac{3-0}{1+0} - 0$$
$$= 3$$

(b)

$$a_n = \sqrt{n} \left(\sqrt{n+4} - \sqrt{n}\right) \text{ for } n \ge 1$$
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+4} - \sqrt{n}\right) \cdot \frac{\sqrt{n+4} + \sqrt{n}}{\sqrt{n+4} + \sqrt{n}}$$
$$= \lim_{n \to \infty} \frac{\sqrt{n} \cdot (n+4-n)}{\sqrt{n+4} + \sqrt{n}}$$
$$= \lim_{n \to \infty} \frac{1 \cdot 4}{\sqrt{1+4} + 1}$$
$$= \frac{4}{\sqrt{1+0} + 1}$$
$$= 2$$

$$a_n = \frac{7^n}{n!}$$
 for $n \ge 1$

Note that for n > 7,

$$a_{n} = \frac{7^{7}}{7!} \cdot \frac{7}{8} \cdot \frac{7}{9} \cdot \dots \cdot \frac{7}{n}$$

$$< \frac{7^{7}}{7!} \cdot 1 \cdot 1 \cdot \dots \cdot \frac{7}{n}$$

$$= \frac{7^{8}}{7!} \cdot \frac{1}{n}$$

Then for n > 7, We have

$$0 < a_n < \frac{7^8}{7!} \cdot \frac{1}{n}$$

Since $\lim_{n \to \infty} \frac{7^8}{7!} \cdot \frac{1}{n} = 0$, by sandwich theorem, $\lim_{n \to \infty} a_n = 0$.

(d)

$$a_n = \frac{\sin n^2}{n}$$
 for $n \ge 1$

We have $-1 \leq \sin n^2 \leq 1$ Then $\frac{-1}{n} \leq \frac{\sin n^2}{n} \leq \frac{1}{n}$ Since $\lim_{n \to \infty} \frac{-1}{n} = 0$ and $\lim_{n \to \infty} \frac{1}{n} = 0$, by sandwich theorem, $\lim_{n \to \infty} a_n = 0$.

		Υ.
1	0	۱
1	C	1
· ·		1

$$a_n = \frac{n}{n+n^{1/n}}$$
 for $n \ge 1$

We first prove that $0 < n^{1/n} < 2$. Clearly, $n^{1/n} > 0$ since n is positive. We can use mathematical induction to prove that $n < 2^n$, hence $n^{1/n} < 2$. For $n = 1, 2^1 = 2 > 1$ For $n = k + 1, k + 1 \le 2k < 2 \cdot 2^k = 2^{k+1}$ Then $0 < n^{1/n} < 2$.

$$\frac{n}{n+2} < \frac{n}{n+n^{1/n}} < \frac{n}{n+0} = 1$$

Since $\lim_{n \to \infty} \frac{n}{n+2} = 1$, by sandwich theorem, $\lim_{n \to \infty} a_n = 1$. (f)

$$a_n = \left(3 + \frac{2}{n^2}\right)^{1/3}$$
 for $n \ge 1$
 $\lim_{n \to \infty} a_n = (3+0)^{1/3}$
 $= 3^{1/3}$

2. Consider the following bounded and increasing sequence:

$$\begin{cases} a_1 = \sqrt{3} \\ a_2 = \sqrt{3 + \sqrt{3}} \\ a_3 = \sqrt{3 + \sqrt{3 + \sqrt{3}}} \\ \vdots \\ a_{n+1} = \sqrt{3 + a_n} \\ \vdots \end{cases}$$

Answer the following questions:

- (a) Show that the sequence converges and find its limit.
- (b) Answer the same question when 3 is replaced by an arbitrary integer $k \ge 2$.

Solutions:

(i) Let P(n) be the statement that $a_{n+1} \ge a_n$. (a)• When n = 1,

$$a_2 = \sqrt{3 + \sqrt{3}} > \sqrt{3} = a_1$$

Hence, P(1) is true.

• Suppose P(m) is true, i.e.

 $a_{m+1} \ge a_m$

• When n = m + 1,

$$a_{m+2} = \sqrt{3 + a_{m+1}} \ge \sqrt{3 + a_m} = a_{m+1}$$

Hence, P(m+1) is true.

Therefore, P(n) is true for any $n \ge 1$, i.e. $\{a_n\}$ is increasing. (ii) Let Q(n) be the statement that $a_{n+1} \leq \frac{1+\sqrt{13}}{2}$.

- - When n = 1,

$$a_1 = \sqrt{3} < \sqrt{\frac{13}{4}} = \frac{\sqrt{13}}{2} < \frac{1 + \sqrt{13}}{2}$$

Hence, Q(1) is true.

• Suppose Q(m) is true, i.e.

$$a_m \le \frac{1 + \sqrt{13}}{2}$$

• When n = m + 1,

$$a_{m+1} = \sqrt{3 + a_m} \le \sqrt{3 + \frac{1 + \sqrt{13}}{2}} = \frac{\sqrt{1 + 2\sqrt{13} + 13}}{2} = \frac{1 + \sqrt{13}}{2}$$

Hence, Q(m+1) is true.

Therefore, Q(n) is true for any $n \ge 1$, i.e. $a_n \le \frac{1+\sqrt{13}}{2}$. By Monotone Convergence Theorem, $\{a_n\}$ is convergent. Suppose $\lim_{n\to\infty} a_n = L$.

$$a_{n+1} = \sqrt{3 + a_n}$$
$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{3 + a_n}$$
$$L = \sqrt{3 + L}$$
$$L^2 - L - 3 = 0$$
$$L = \frac{1 + \sqrt{13}}{2} \quad \text{or} \quad L = \frac{1 - \sqrt{13}}{2}$$

 $L = \frac{1-\sqrt{13}}{2}$ is rejected since $a_n > 0$ for all n. Hence, $\lim_{n \to \infty} a_n = \frac{1+\sqrt{13}}{2}$.

- (b) For any integer $k \ge 2$,
 - (i) Let P(n) be the statement that $a_{n+1} \ge a_n$.
 - When n = 1,

$$a_2 = \sqrt{k + \sqrt{k}} > \sqrt{k} = a_1$$

Hence, P(1) is true.

• Suppose P(m) is true, i.e.

 $a_{m+1} \ge a_m$

• When n = m + 1,

$$a_{m+2} = \sqrt{k + a_{m+1}} \ge \sqrt{k + a_m} = a_{m+1}$$

Hence, P(m+1) is true.

Therefore, P(n) is true for any $n \ge 1$, i.e. $\{a_n\}$ is increasing. (ii) Let Q(n) be the statement that $a_{n+1} \le \frac{1+\sqrt{1+4k}}{2}$.

• When n = 1,

$$a_1 = \sqrt{k} < \sqrt{\frac{1+4k}{4}} = \frac{\sqrt{1+4k}}{2} < \frac{1+\sqrt{1+4k}}{2}$$

Hence, Q(1) is true.

• Suppose Q(m) is true, i.e.

$$a_m \le \frac{1 + \sqrt{1 + 4k}}{2}$$

• When n = m + 1,

$$a_{m+1} = \sqrt{k + a_m} \le \sqrt{k + \frac{1 + \sqrt{1 + 4k}}{2}} = \frac{\sqrt{1 + 2\sqrt{1 + 4k} + 1 + 4k}}{2} = \frac{1 + \sqrt{1 + 4k}}{2}$$

Hence, Q(m+1) is true.

Therefore, Q(n) is true for any $n \ge 1$, i.e. $a_n \le \frac{1+\sqrt{1+4k}}{2}$.

By Monotone Convergence Theorem, $\{a_n\}$ is convergent. Suppose $\lim_{n\to\infty} a_n = L$.

$$\begin{aligned} a_{n+1} &= \sqrt{k+a_n} \\ \lim_{n \to \infty} a_{n+1} &= \lim_{n \to \infty} \sqrt{k+a_n} \\ L &= \sqrt{k+L} \\ L^2 - L - k &= 0 \\ L &= \frac{1 + \sqrt{1+4k}}{2} \quad \text{or} \quad L &= \frac{1 - \sqrt{1+4k}}{2} \\ L &= \frac{1 - \sqrt{1+4k}}{2} \end{aligned}$$

$$L = \frac{1 - \sqrt{1+4k}}{2} \text{ is rejected since } a_n > 0 \text{ for all } n. \text{ Hence, } \lim_{n \to \infty} a_n = \frac{1 + \sqrt{1+4k}}{2} \end{aligned}$$

3. For this problem, you may make use of the following mathematical result:

Fact. Let a, r be real numbers, with $r \neq 1$. Let $\{S_n\}$ be the geometric series defined as follows:

$$S_n = \sum_{k=0}^n ar^k = a + ar + ar^2 + \dots + ar^n, \quad n = 0, 1, 2, \dots$$

Then, $S_n = a\left(\frac{1 - r^{n+1}}{1 - r}\right).$

(a) Verify that $\{S_n\}$ converges to $\frac{a}{a}$ when

- (a) Verify that $\{S_n\}$ converges to $\frac{a}{1-r}$, whenever |r| < 1.
- (b) Use the result of Part (a) to find the limit of the sequence $\{a_n\}$, where

$$a_n = 1 + \frac{3}{4} + \frac{3}{4^2} + \dots + \frac{3}{4^n}.$$

(c) Use the result of Part (a) to verify that the repeating decimal $1.777\cdots$, often written as $1.\dot{7}$, is equal to $\frac{16}{9}$.

Solutions:

- (a) When |r| < 1, we have $1 r \neq 0$ and $\lim_{n \to \infty} r^{n+1} = 0$. Then $\lim_{n \to \infty} S_n = \lim_{n \to \infty} a\left(\frac{1 - r^{n+1}}{1 - r}\right) = a\left(\frac{1 - \lim_{n \to \infty} r^{n+1}}{1 - r}\right) = a\left(\frac{1 - 0}{1 - r}\right) = \frac{a}{1 - r}$. (b) Let a = 3 and $r = \frac{1}{4}$. Then $a_n = S_n - 2$.
- (b) Let a = 3 and $r = \frac{1}{4}$. Then $a_n = S_n 2$. Then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - 2 = \frac{a}{1-r} - 2 = \frac{3}{1-\frac{1}{4}} - 2 = 2$.
- (c) Let a = 7 and $r = \frac{1}{10}$. Then $a_n = S_n 6$. Then $1.\dot{7} = \lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - 6 = \frac{a}{1-r} - 6 = \frac{7}{1-\frac{1}{10}} - 6 = \frac{16}{9}$.
- 4. A sequence $\{a_n\}$ is defined recursively by the following equations:

$$\begin{cases} a_1 = 1, \\ a_{n+1} = \sqrt{7 + 2a_n} & \text{for } n \ge 1. \end{cases}$$

Answer the following questions:

- (a) Show that $\{a_n\}$ is bounded and monotonic and hence convergent.
- (b) Find the limit of $\{a_n\}$.

Solutions:

- (a) (i) Let P(n) be the statement that $a_{n+1} \ge a_n$.
 - When n = 1, $a_2 = \sqrt{7+2} = 3 > 1 = a_1$

Hence, P(1) is true.

• Suppose P(m) is true, i.e.

$$a_{m+1} \ge a_m$$

• When n = m + 1,

$$a_{m+2} = \sqrt{7 + 2a_{m+1}} \ge \sqrt{7 + 2a_m} = a_{m+1}$$

Hence, P(m+1) is true.

Therefore, P(n) is true for any $n \ge 1$, i.e. $\{a_n\}$ is increasing. (ii) Let Q(n) be the statement that $a_{n+1} \le 1 + 2\sqrt{2}$.

• When n = 1,

$$a_1 = 1 < 1 + 2\sqrt{2}$$

Hence, Q(1) is true.

• Suppose Q(m) is true, i.e.

$$a_m \le 1 + 2\sqrt{2}$$

• When n = m + 1,

$$a_{m+1} = \sqrt{7 + 2a_m} \le \sqrt{7 + 2 + 4\sqrt{2}} = \sqrt{1 + 2 \times 2\sqrt{2} + 8} = 1 + 2\sqrt{2}$$

Hence, Q(m+1) is true.

Therefore, Q(n) is true for any $n \ge 1$, i.e. $a_n \le 1 + 2\sqrt{2}$. By Monotone Convergence Theorem, $\{a_n\}$ is convergent.

(b) Suppose $\lim_{n \to \infty} a_n = L$.

$$a_{n+1} = \sqrt{7 + 2a_n}$$
$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{7 + 2a_n}$$
$$L = \sqrt{7 + 2L}$$
$$L^2 - 2L - 7 = 0$$
$$L = 1 + 2\sqrt{2} \quad \text{or} \quad L = 1 - 2\sqrt{2}$$

 $L = 1 - 2\sqrt{2}$ is rejected since $a_n > 0$ for all n. Hence, $\lim_{n \to \infty} a_n = 1 + 2\sqrt{2}$.

5. A sequence is defined by $x_1 = 1, x_{n+1} = \frac{2}{3}x_n + \frac{9}{x_n^2}$ for $n \ge 1$.

(a) (i) Show that

$$\frac{2}{3}x + \frac{9}{x^2} - 3 = \frac{(x-3)^2(2x+3)}{3x^2}$$

- (ii) Show that $x_n \ge 3$ for $n \ge 2$.
- (b) (i) Show that

$$\frac{2}{3}x + \frac{9}{x^2} \le x$$

for $x \geq 3$.

(ii) Prove that $x_{n+1} \leq x_n$ for $n \geq 2$.

(c) Hence show that $\{x_n\}$ converges and find $\lim_{n\to\infty} x_n$.

Solutions:

 $(a) \quad (i)$

$$\frac{2}{3}x + \frac{9}{x^2} - 3 = \frac{2x^3 + 27 - 9x^2}{3x^2}$$
$$= \frac{(2x+3)(x^2 - 6x + 9)}{3x^2}$$
$$= \frac{(x-3)^2(2x+3)}{3x^2}$$

(ii) Let P(n) be the statement that $x_n \ge 3$.

• When n = 2,

$$x_2 = \frac{2}{3} \times 1 + \frac{9}{1^2} = \frac{29}{3} > 3$$

Hence, P(2) is true.

• Suppose P(m) is true, i.e.

$$x_m \ge 3$$

• When n = m + 1,

$$x_{m+1} - 3 = \frac{2}{3}x_m + \frac{9}{x_m^2} - 3 = \frac{(x_m - 3)^2(2x_m + 3)}{3x_m^2} \ge 0$$
$$x_{m+1} \ge 3$$

Hence, P(m+1) is true.

Therefore, P(n) is true for any $n \ge 2$, i.e. $x_n \ge 3$.

(b) (i)

$$\frac{2}{3}x + \frac{9}{x^2} - x = \frac{2x^3 + 27 - 3x^3}{3x^2}$$
$$= \frac{27 - x^3}{3x^2}$$
$$\leq 0$$

for $x \ge 3$. Then $\frac{2}{3}x + \frac{9}{x^2} \le x$ for $x \ge 3$. (ii) For $n \ge 2$, $x_n \ge 3$ by (a). Then

$$x_{n+1} = \frac{2}{3}x_n + \frac{9}{x_n^2} \le x_n$$

by (i).

(c) By Monotone Convergence Theorem, $\{x_n\}$ is convergent. Suppose $\lim_{n\to\infty} x_n = L$.

$$x_{n+1} = \frac{2}{3}x_n + \frac{9}{x_n^2}$$
$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(\frac{2}{3}x_n + \frac{9}{x_n^2}\right)$$
$$L = \frac{2}{3}L + \frac{9}{L^2}$$
$$\frac{2}{3}L + \frac{9}{L^2} - L = 0$$
$$\frac{27 - L^3}{3L^2} = 0$$
$$L = 3$$

Hence, $\lim_{n \to \infty} x_n = 3.$

- 6. For each of the given functions, f, find its natural domain, that is, the largest subset of \mathbb{R} on which the expression defining f may be validly computed. Please express your answer in the form of a single interval, or a union of disjoint intervals. For example: $(-\infty, 2) \cup [5, 11)$.
 - (a) $f(x) = \frac{1}{2}\sqrt{4-x^2}$. (b) $f(x) = \sqrt{\frac{x-2}{x+2}}$. (c) $f(x) = \ln(3x^2 - 4x + 5)$. (d) $f(x) = \ln(\sqrt{x-4} + \sqrt{6-x})$. (e) $f(x) = \sin^2 x + \cos^4 x$. (f) $f(x) = \frac{1}{1+\cos x}$. (g) f(x) = 1 - |x|.

Solutions:

(a)

$$f(x) = \frac{1}{2}\sqrt{4-x^2}$$

It implies the condition $4 - x^2 \ge 0, -2 \le x \le 2$. Hence the largest domain is [-2, 2]

$$f(x) = \sqrt{\frac{x-2}{x+2}}$$

It implies two conditions $x \neq -2$ and $\frac{x-2}{x+2} \ge 0$. For $\frac{x-2}{x+2} \ge 0$, $\frac{x-2}{x+2} \ge 0$ $\frac{x-2}{x+2} \cdot (x+2)^2 \ge 0$ $(x-2)(x+2) \ge 0$ $x \le -2$ or $x \ge 2$

Hence the largest domain is $(-\infty, -2) \cup [2, \infty)$

(c)

$$f(x) = \ln(3x^2 - 4x + 5)$$

It implies the condition $3x^2 - 4x + 5 > 0$. Note that $\Delta = (-4)^2 - 4 \cdot 3 \cdot 5 = -44 < 0$, so the equation has no real roots. Then $3x^2 - 4x + 5 > 0$ for any x. Hence the largest domain is $(-\infty, \infty)$

(d)

$$f(x) = \ln(\sqrt{x-4} + \sqrt{6-x})$$

It implies three conditions $x - 4 \ge 0$, $6 - x \ge 0$, and $\sqrt{x - 4} + \sqrt{6 - x} > 0$. We get $4 \le x \le 6$ from the first two conditions.

For the third condition, note that $\sqrt{x-4} \ge 0$ and $\sqrt{6-x} \ge 0$, and they cannot be 0 simultaneously, so any number satisfying $4 \le x \le 6$ works. Hence the largest domain is [4, 6]

$$f(x) = \sin^2 x + \cos^4 x$$

Note that $\sin x$ and $\cos x$ do not impose any conditions on domain. Hence the largest domain is $(-\infty,\infty)$

(f)

$$f(x) = \frac{1}{1 + \cos x}$$

It implies the condition $\cos x \neq -1$. Then $x \neq \pi + 2n\pi$, where *n* is any integer. To write the largest domain in disjoint interval, it involves infinitely many intervals of the form $((2n+1)\pi, (2n+3)\pi)$ We can write it as $\bigcup_{n \in \mathbb{Z}} ((2n+1)\pi, (2n+3)\pi)$

(g)

$$f(x) = 1 - |x|$$

Note that |x| do not impose any conditions on domain. Hence the largest domain is $(-\infty,\infty)$

7. Determine whether the given function, f, is injective, surjective, bijective, or none of these. Explain clearly.

- (a) $f : \mathbb{R} \to \mathbb{R}$, where f(x) = 2x 1.
- (b) $f: \{x \mid x \neq 1\} \to \mathbb{R}$, where $f(x) = \frac{x^2 1}{x 1}$.
- (c) $f : \mathbb{R} \to \mathbb{R}$, where $f(x) = \sqrt[3]{x}$.
- (d) $f: [-1, 1] \to [0, 4)$, where $f(x) = x^2$.

Solutions:

- (a) For any $x_1, x_2 \in \mathbb{R}$ with $x_1 \neq x_2$, we have $f(x_1) = 2x_1 1 \neq f(x_2) = 2x_2 1$. Then f(x) is injective. For any real number $y \in \mathbb{R}$, there exists $x = \frac{y+1}{2} \in \mathbb{R}$ such that f(x) = y. Then f(x) is surjective. Thus, f(x) is bijective since it is both injective and surjective.
- (b) f(x) = x + 1, for $x \in (-\infty, 1) \cup (1, +\infty)$. For any $x_1, x_2 \in (-\infty, 1) \cup (1, +\infty)$ with $x_1 \neq x_2$, we have $f(x_1) = x_1 + 1 \neq f(x_2) = x_2 + 1$. Then f(x) is injective. For real number y = 2, there exists no $x \in (-\infty, 1) \cup (1, +\infty)$ such that f(x) = y. For otherwise, $x^2 - 1 = 2(x - 1) \implies (x - 1)^2 = 0 \implies x = 1$, which is a contradiction. So f(x) is not surjective. Thus, f(x) is not bijective.
- (c) For any x₁, x₂ ∈ ℝ with x₁ ≠ x₂, we have f(x₁) = ³√x₁ ≠ f(x₂) = ³√x₂. Then f(x) is injective.
 For any real number y ∈ ℝ, there exists x = y³ ∈ ℝ such that f(x) = y. Then f(x) is surjective.
 Thus, f(x) is bijective since it is both injective and surjective.
- (d) For $x_1 = -x_2$, $x_1, x_2 \in [-1, 1]$, we have $f(x_1) = f(x_2)$. Then f(x) is not injective. For y < 0, there exists no $x \in [-1, 1]$ such that f(x) = y. Then, f(x) is not surjective. Thus, f(x) is not bijective.
- 8. Determine whether the given function, f, is increasing, strictly increasing, decreasing, strictly decreasing, bounded, bounded above, or bounded below.
 - (a) $f: [0, +\infty) \to \mathbb{R}$, where $f(x) = \frac{x}{x+1}$. (b) $f: \mathbb{R}^+ \to \mathbb{R}$, where $f(x) = \frac{1}{x}$.

Solutions:

(a)

$$f(x) = 1 - \frac{1}{x+1}$$

For any x, y with x < y and $x, y \in [0, +\infty)$, we have f(x) < f(y). Then f(x) is strictly increasing.

For $x \in [0, +\infty)$, $0 = f(0) \le f(x) \le \lim_{x \to +\infty} f(x) = 1$. Then f(x) is bounded.

- (b) For any x, y with x < y and $x, y \in (0, +\infty)$, we have f(x) > f(y). Then f(x) is strictly decreasing. Clearly, f(x) = 1/x > 0 for any $x \in \mathbb{R}^+$. So f is bounded below by 0. On the other hand, f is not bounded above. Otherwise, if $f(x) \le M$ for any $x \in \mathbb{R}^+$, then, in particular, $M + 1 = f(1/(M + 1)) \le M$, which is a contradiction.
- 9. Find whether the function is even, odd or neither:

(a)
$$f(x) = x^{2} - |x|$$

(b)
$$f(x) = \log_{2} \left(x + \sqrt{x^{2} + 1} \right)$$

(c)
$$f(x) = x \left(\frac{a^{x} - 1}{a^{x} + 1} \right)$$

(d)
$$f(x) = \sin x + \cos x$$

Solutions:

(a)

$$f(-x) = x^2 - |x| = f(x)$$

Thus, f(x) is even.

(b)

$$f(-x) = \log_2\left(-x + \sqrt{x^2 + 1}\right)$$
$$= \log_2\left(\left(-x + \sqrt{x^2 + 1}\right) \cdot \frac{x + \sqrt{x^2 + 1}}{x + \sqrt{x^2 + 1}}\right)$$
$$= \log_2\left(\frac{1}{x + \sqrt{x^2 + 1}}\right)$$
$$= -f(x)$$

Thus, f(x) is odd.

(c)

$$f(-x) = -x(\frac{a^{-x} - 1}{a^{-x} + 1})$$

= $x(\frac{a^x - 1}{a^x + 1})$
= $f(x)$

Thus, f(x) is even.

(d)

$$f(-x) = \sin(-x) + \cos(-x)$$
$$= -\sin x + \cos x$$

f(x) is neither even nor odd since $f(-x) \neq f(x)$ and $f(-x) \neq -f(x)$.

10. Evaluate the limit, if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

$$\begin{array}{ll} \text{(a)} & \lim_{x \to 3} \frac{x^3 - 3x^2 + 5x - 15}{x^2 - x - 12}. \\ \text{(b)} & \lim_{x \to 1/2} \frac{1 - 32x^5}{1 - 8x^3}. \\ \text{(c)} & \lim_{x \to 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}}. \\ \text{(d)} & \lim_{x \to 1} \frac{\sqrt{x^2 + 8} - \sqrt{10 - x^2}}{\sqrt{x^2 + 3} - \sqrt{5 - x^2}}. \\ \text{(e)} & \lim_{x \to 1} \left(\frac{2}{1 - x^2} + \frac{1}{x - 1}\right). \\ \text{(f)} & \lim_{x \to a} \left(\frac{2a}{x^2 - a^2} - \frac{1}{x - a}\right). \\ \text{(g)} & \lim_{x \to a} \left(\frac{x^m - a^m}{x^n - a^n}\right). \\ \text{(h)} & \lim_{x \to 1} \left(\frac{x - 1}{x^{1/4} - 1}\right). \\ \text{(i)} & \lim_{x \to 0} \left(\frac{\sqrt{x + 1} - 1}{\ln(1 + x)}\right). \\ \\ \text{(j)} & \lim_{x \to 0} \left(\frac{x^{7/10} + 3x^{4/3} + 2x}{x^{1/3} + 4x^{2/3} + 2x^{1/5}}\right). \end{array}$$

Solutions:

(a)

$$\lim_{x \to 3} \frac{x^3 - 3x^2 + 5x - 15}{x^2 - x - 12}$$
$$= \frac{3^3 - 3(3^2) + 5(3) - 15}{3^2 - 3 - 12}$$
$$= 0$$

$$\lim_{x \to 1/2} \frac{1 - 32x^5}{1 - 8x^3}$$

$$= \lim_{x \to 1/2} \frac{(1 - 2x)(1 + 2x + 4x^2 + 8x^3 + 16x^4)}{(1 - 2x)(1 + 2x + 4x^2)}$$

$$= \lim_{x \to 1/2} \frac{1 + 2x + 4x^2 + 8x^3 + 16x^4}{1 + 2x + 4x^2}$$

$$= \frac{1 + 2(\frac{1}{2}) + 4(\frac{1}{2})^2 + 8(\frac{1}{2})^3 + 16(\frac{1}{2})^4}{1 + 2(\frac{1}{2}) + 4(\frac{1}{2})^2}$$

$$= \frac{5}{3}$$

(c)

$$\lim_{x \to 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}}$$

$$= \lim_{x \to 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}} \cdot \frac{x + \sqrt{2 - x^2}}{2x + \sqrt{2 + 2x^2}} \cdot \frac{2x + \sqrt{2 + 2x^2}}{x + \sqrt{2 - x^2}}$$

$$= \lim_{x \to 1} \frac{x^2 - (2 - x^2)}{4x^2 - (2 + 2x^2)} \cdot \frac{2x + \sqrt{2 + 2x^2}}{x + \sqrt{2 - x^2}}$$

$$= \lim_{x \to 1} \frac{2x + \sqrt{2 + 2x^2}}{x + \sqrt{2 - x^2}}$$

$$= \frac{2(1) + \sqrt{2 + 2(1)^2}}{1 + \sqrt{2 - 1^2}}$$

$$= 2$$

(d)

$$\begin{split} &\lim_{x \to 1} \frac{\sqrt{x^2 + 8} - \sqrt{10 - x^2}}{\sqrt{x^2 + 3} - \sqrt{5 - x^2}} \\ &= \lim_{x \to 1} \frac{\sqrt{x^2 + 8} - \sqrt{10 - x^2}}{\sqrt{x^2 + 3} - \sqrt{5 - x^2}} \cdot \frac{\sqrt{x^2 + 8} + \sqrt{10 - x^2}}{\sqrt{x^2 + 3} + \sqrt{5 - x^2}} \cdot \frac{\sqrt{x^2 + 3} + \sqrt{5 - x^2}}{\sqrt{x^2 + 8} + \sqrt{10 - x^2}} \\ &= \lim_{x \to 1} \frac{x^2 + 8 - (10 - x^2)}{x^2 + 3 - (5 - x^2)} \cdot \frac{\sqrt{x^2 + 3} + \sqrt{5 - x^2}}{\sqrt{x^2 + 8} + \sqrt{10 - x^2}} \\ &= \lim_{x \to 1} \frac{\sqrt{x^2 + 3} + \sqrt{5 - x^2}}{\sqrt{x^2 + 8} + \sqrt{10 - x^2}} \\ &= \frac{\sqrt{1^2 + 3} + \sqrt{5 - 1^2}}{\sqrt{1^2 + 8} + \sqrt{10 - 1^2}} \\ &= \frac{2}{3} \end{split}$$

(b)

$$\lim_{x \to 1} \frac{2}{1 - x^2} + \frac{1}{x - 1}$$
$$= \lim_{x \to 1} \frac{2 - (1 + x)}{(1 - x)(1 + x)}$$
$$= \lim_{x \to 1} \frac{1}{1 + x}$$
$$= \frac{1}{1 + 1}$$
$$= \frac{1}{2}$$

(f)

$$\lim_{x \to a} \frac{2a}{x^2 - a^2} - \frac{1}{x - a}$$
$$= \lim_{x \to a} \frac{2a - (x + a)}{(x - a)(x + a)}$$
$$= \lim_{x \to a} \frac{-1}{x + a}$$

(Case 1) If $a \neq 0$,

$$\lim_{x \to a} \frac{-1}{x+a}$$
$$= \frac{-1}{a+a}$$
$$= -\frac{1}{2a}$$

(Case 2) If a = 0, the limit does not exist since

$$\lim_{x \to a^{-}} \frac{-1}{x+a} = \lim_{x \to 0^{-}} \frac{-1}{x} = +\infty$$

while

$$\lim_{x \to a^+} \frac{-1}{x+a} = \lim_{x \to 0^+} \frac{-1}{x} = -\infty$$

(g)

$$\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n}$$

(Case 1) Suppose $a \neq 0$.

$$\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n}$$

=
$$\lim_{x \to a} \frac{mx^{m-1}}{nx^{n-1}}$$
 (l'Hôpital's rule)
=
$$\frac{m}{n}a^{m-n}$$

Alternative answer without using l'Hôpital's rule:

If m = 0, then

$$\frac{x^m - a^m}{x - a} = \frac{1 - 1}{x - a} = 0.$$

If m > 0, then

$$\lim_{x \to a} \frac{x^m - a^m}{x - a} = \lim_{x \to a} \sum_{k=0}^{m-1} x^k a^{m-1-k} = \sum_{k=0}^{m-1} a^{m-1} = ma^{m-1}.$$

If m < 0, then by the above limit,

$$\lim_{x \to a} \frac{x^m - a^m}{x - a} = \lim_{x \to a} -x^m a^m \cdot \frac{x^{-m} - a^{-m}}{x - a} = -a^{2m}(-m)a^{-m-1} = ma^{m-1}.$$

Hence, if $n \neq 0$, we have

$$\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n} = \lim_{x \to a} \frac{x^m - a^m}{x - a} \cdot \frac{x - a}{x^n - a^n} = \frac{m}{n} a^{m-n}.$$

(Case 2) If a = 0 and m = n,

$$\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n} = 1$$

(Case 3) If a = 0 and m > n,

$$\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n} = \lim_{x \to 0} x^{m-n} = 0$$

(Case 4) If a = 0 and m < n, the limit does not exist since

$$\lim_{x \to a^+} \frac{x^m - a^m}{x^n - a^n} = \lim_{x \to 0^+} \frac{1}{x^{n-m}} = +\infty,$$

while

$$\lim_{x \to a^{-}} \frac{x^m - a^m}{x^n - a^n} = \lim_{x \to 0^{-}} \frac{1}{x^{n-m}} = -\infty.$$

(h)

$$\lim_{x \to 1} \frac{x - 1}{x^{1/4} - 1}$$

$$= \lim_{x \to 1} \frac{(x^{1/4} - 1)(x^{1/4} + 1)(x^{1/2} + 1)}{x^{1/4} - 1}$$

$$= \lim_{x \to 1} (x^{1/4} + 1)(x^{1/2} + 1)$$

$$= (1 + 1)(1 + 1)$$

$$= 4$$

$$\lim_{x \to 0} \frac{\sqrt{x+1}-1}{\ln(x+1)}$$

$$= \lim_{x \to 0} \frac{(2\sqrt{x+1})^{-1}}{(x+1)^{-1}} \quad (l'Hôpital's rule)$$

$$= \frac{\sqrt{0+1}}{2}$$

$$= \frac{1}{2}$$

See 11(h) for an answer without using l'Hôpital's rule. (j)

$$\lim_{x \to 0} \frac{x^{7/10} + 3x^{4/3} + 2x}{x^{1/3} + 4x^{2/3} + 2x^{1/5}}$$
$$= \lim_{x \to 0} \frac{x^{1/2} + 3x^{17/15} + 2x^{4/5}}{x^{2/15} + 4x^{7/15} + 2}$$
$$= \frac{0 + 0 + 0}{0 + 0 + 2}$$
$$= 0$$

11. Without using l'Hôpital's rule, evaluate the limit, if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

•

(a)
$$\lim_{x \to \infty} \frac{\sqrt{x^4 + 1} - \sqrt{x^4 - 1}}{x}.$$

(b)
$$\lim_{x \to \infty} \frac{\sqrt{3x^2 - 1} - \sqrt{2x^2 + 1}}{4x + 3}.$$

(c)
$$\lim_{x \to \pi/2} \left(\frac{1 - \sin^3 x}{1 - \sin^2 x}\right).$$

(d)
$$\lim_{x \to \pi/4} \left(\frac{\sin 2x - (1 + \cos 2x)}{\cos x - \sin x}\right).$$

(e)
$$\lim_{x \to \pi/4} \frac{\sqrt{2} - \cos x - \sin x}{(4x - \pi)^2}.$$

(f)
$$\lim_{x \to 0} \frac{\sin 7x - \sin x}{\sin 6x}.$$

(g)
$$\lim_{x \to 0} \left(\frac{1 + x}{1 - x}\right)^{1/x}.$$

(h)
$$\lim_{x \to 0} \left(\frac{\sqrt{x + 1} - 1}{\ln (1 + x)}\right).$$

(i)

(i)
$$\lim_{x \to 0} \left(\frac{e^{ax} - e^a}{x} \right)$$
 where *a* is a constant.

Solutions:

(a)

$$\lim_{x \to \infty} \frac{\sqrt{x^4 + 1} - \sqrt{x^4 - 1}}{x} = \lim_{x \to \infty} \frac{(\sqrt{x^4 + 1} - \sqrt{x^4 - 1})(\sqrt{x^4 + 1} + \sqrt{x^4 - 1})}{x(\sqrt{x^4 + 1} + \sqrt{x^4 - 1})}$$
$$= \lim_{x \to \infty} \frac{2}{x(\sqrt{x^4 + 1} + \sqrt{x^4 - 1})}$$
$$= 0$$

(b)

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 - 1} - \sqrt{2x^2 + 1}}{4x + 3} = \lim_{x \to \infty} \frac{\sqrt{3 - \frac{1}{x^2}} - \sqrt{2 + \frac{1}{x^2}}}{4 + \frac{3}{x}}$$
$$= \frac{\sqrt{3} - \sqrt{2}}{4}$$

(c)

$$x^{3} - 1 = (x - 1)(x^{2} + x + 1)$$
$$\lim_{x \to \pi/2} \left(\frac{1 - \sin^{3} x}{1 - \sin^{2} x}\right) = \lim_{x \to \pi/2} \frac{(1 - \sin x)(1 + \sin x + \sin x)}{(1 - \sin x)(1 + \sin x)}$$
$$= \lim_{x \to \pi/2} \frac{(1 + \sin x + \sin x)}{(1 + \sin x)}$$
$$= \lim_{x \to \pi/2} \frac{1 + 2\sin x}{1 + \sin x}$$
$$= \frac{3}{2}$$

(d)

$$1 + 2\cos 2x = 1 + \cos^2 x - \sin^2 x$$
$$\sin 2x = 2\sin x \cos x$$
$$\lim_{x \to \pi/4} \left(\frac{\sin 2x - (1 + \cos 2x)}{\cos x - \sin x}\right) = \lim_{x \to \pi/4} \frac{2\cos x(\sin x - \cos x)}{\cos x - \sin x}$$
$$= \lim_{x \to \pi/4} -2\cos x$$
$$= -\sqrt{2}$$

(e)

$$a\cos x + b\sin x = \sqrt{a^2 + b^2}\sin(x + \tan^{-1}\frac{a}{b}),$$

for $b \neq 0$ and $-\frac{\pi}{2} < \tan^{-1} \frac{a}{b} < \frac{\pi}{2}$.

$$1 - \cos x = 2\sin^2(\frac{x}{2})$$

Thus, we have

$$\cos x + \sin x = \sqrt{2}\sin(x + \frac{\pi}{4})$$
$$= \sqrt{2}\cos(x - \frac{\pi}{4})$$

$$\lim_{x \to \pi/4} \frac{\sqrt{2} - \cos x - \sin x}{(4x - \pi)^2} = \lim_{x \to \pi/4} \frac{\sqrt{2} - \sqrt{2}\cos(x - \frac{\pi}{4})}{(4x - \pi)^2}$$
$$= \lim_{x \to \pi/4} \frac{\sqrt{2}}{16} \times \frac{1 - \cos(x - \frac{\pi}{4})}{(x - \frac{\pi}{4})^2}$$
$$= \frac{\sqrt{2}}{16} \lim_{x \to \pi/4} \frac{2\sin^2(\frac{x}{2} - \frac{\pi}{8})}{4(\frac{x}{2} - \frac{\pi}{8})^2}$$
$$= \frac{\sqrt{2}}{32} \lim_{x \to \pi/4} \frac{\sin^2(\frac{x}{2} - \frac{\pi}{8})}{(\frac{x}{2} - \frac{\pi}{8})^2}$$
$$= \frac{\sqrt{2}}{32} \lim_{x \to \pi/4} (\frac{\sin(\frac{x}{2} - \frac{\pi}{8})}{\frac{x}{2} - \frac{\pi}{8}})^2$$
$$= \frac{\sqrt{2}}{32}$$

(f)

$$\lim_{x \to 0} \frac{\sin 7x - \sin x}{\sin 6x} = \lim_{x \to 0} \frac{\sin 6x \cos x + \cos 6x \sin x - \sin x}{\sin 6x}$$
$$= \lim_{x \to 0} (\cos x + \frac{\sin x (\cos 6x - 1)}{\sin 6x})$$
$$= \lim_{x \to 0} \cos x + \lim_{x \to 0} \frac{\sin x (-2 \sin^2 3x)}{2 \sin 3x \cos 3x}$$
$$= \lim_{x \to 0} \cos x - \lim_{x \to 0} \sin x \tan 3x$$
$$= 1 + 0 = 1$$

(g)

$$\lim_{x \to 0} \left(\frac{1+x}{1-x} \right)^{1/x} = \lim_{x \to 0} (1+x)^{1/x} (1-x)^{1/(-x)}$$
$$= e \cdot e$$
$$= e^2.$$

$$\begin{split} \lim_{x \to 0} \left(\frac{\sqrt{x+1}-1}{\ln(1+x)} \right) &= \lim_{x \to 0} \frac{x}{\ln(x+1)} \cdot \frac{\sqrt{x+1}-1}{x} \\ &= \lim_{x \to 0} \frac{x}{\ln(x+1)} \cdot \frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{x(\sqrt{x+1}+1))} \\ &= \lim_{x \to 0} \frac{x}{\ln(x+1)} \cdot \frac{1}{\sqrt{x+1}+1} \\ &= \lim_{x \to 0} \frac{x}{\ln(x+1)} \cdot \frac{1}{(\sqrt{x+1}+1)} \\ &= \frac{1}{2} \end{split}$$

(i) First assume $a \neq 0$.

$$\lim_{x \to 0} \left(\frac{e^{ax} - e^a}{x} \right) = a \lim_{x \to 0} \frac{e^{ax} - 1 + 1 - e^a}{ax}$$
$$= a \left(\lim_{x \to 0} \left(\frac{e^{ax} - 1}{ax} + \frac{1 - e^a}{ax} \right) \right)$$

Now $\lim_{x \to 0} \frac{e^{ax} - 1}{ax} = 1$ while

$$\lim_{x \to 0^+} \frac{1 - e^a}{x} = \begin{cases} +\infty & \text{if } a < 0\\ -\infty & \text{if } a > 0 \end{cases} \quad \text{and} \quad \lim_{x \to 0^-} \frac{1 - e^a}{x} = \begin{cases} -\infty & \text{if } a < 0\\ +\infty & \text{if } a > 0 \end{cases}$$

Thus

$$\lim_{x \to 0^+} \left(\frac{e^{ax} - e^a}{x} \right) = \begin{cases} +\infty & \text{if } a < 0\\ 0 & \text{if } a = 0\\ -\infty & \text{if } a > 0 \end{cases} \text{ and } \lim_{x \to 0^-} \left(\frac{e^{ax} - e^a}{x} \right) = \begin{cases} -\infty & \text{if } a < 0\\ 0 & \text{if } a = 0\\ +\infty & \text{if } a > 0 \end{cases}$$

- 12. Evaluate the following limits.
 - (a) $\lim_{x \to 0^{-}} x |\sin \frac{1}{x}|$ (b) $\lim_{x \to +\infty} \frac{\sin \tan x + \tan \sin x}{x+1}$

Solutions:

(a)

$$\lim_{x \to 0^-} x \left| \sin \frac{1}{x} \right|$$

Note that $0 \le \left| \sin \frac{1}{x} \right| \le 1$ Then $-x \le x \left| \sin \frac{1}{x} \right| \le x$

Since
$$\lim_{x \to 0} -x = 0$$
 and $\lim_{x \to 0} x = 0$,
by sandwich theorem, $\lim_{x \to 0} x \left| \sin \frac{1}{x} \right| = 0$
Then $\lim_{x \to 0^{-}} x \left| \sin \frac{1}{x} \right| = 0$

(b)

$$\lim_{x \to +\infty} \frac{\sin \tan x + \tan \sin x}{x+1}$$

Note that
$$-1 \leq \sin x \leq 1$$

Then $-\tan 1 \leq \tan \sin x \leq \tan 1$
 $-\frac{1+\tan 1}{x+1} \leq \frac{\sin \tan x + \tan \sin x}{x+1} \leq \frac{1+\tan 1}{x+1}$ for $x > 0$
Since $\lim_{x \to +\infty} -\frac{1+\tan 1}{x+1} = 0$ and $\lim_{x \to +\infty} \frac{1+\tan 1}{x+1} = 0$,
by sandwich theorem, $\lim_{x \to +\infty} \frac{\sin \tan x + \tan \sin x}{x+1} = 0$

13. Evaluate the following limits.

(a)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x}$$

(b)
$$\lim_{x \to 0} \frac{\tan^2 x}{\sin(x^2)}$$

(c)
$$\lim_{x \to 0} \frac{\sin^2 x}{1 - \sqrt{\cos x}}$$

Solutions:

(a)

$$\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x} \\= \lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x \cos x} \\= \lim_{x \to 0} \frac{1 - \cos x}{(1 - \cos x)(1 + \cos x) \cos x} \\= \lim_{x \to 0} \frac{1}{(1 + \cos x) \cos x} \\= \frac{1}{(1 + 1)(1)} \\= \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\tan^2 x}{\sin(x^2)}$$

$$= \lim_{x \to 0} \frac{\frac{\tan^2 x}{x^2}}{\frac{\sin^2 x}{x^2}}$$

$$= \lim_{x \to 0} \frac{\frac{\sin x \sin x}{x} \frac{1}{\cos^2 x}}{\frac{\sin(x^2)}{x^2}}$$

$$= \frac{(1)(1)\left(\frac{1}{1}\right)}{1}$$

$$= 1$$

(c)

$$\lim_{x \to 0} \frac{\sin^2 x}{1 - \sqrt{\cos x}}$$

=
$$\lim_{x \to 0} \frac{\sin^2 x}{1 - \sqrt{\cos x}} \cdot \frac{1 + \sqrt{\cos x}}{1 + \sqrt{\cos x}} \cdot \frac{1 + \cos x}{1 + \cos x}$$

=
$$\lim_{x \to 0} \frac{\sin^2 x}{1 - \cos^2 x} (1 + \sqrt{\cos x})(1 + \cos x)$$

=
$$\lim_{x \to 0} (1 + \sqrt{\cos x})(1 + \cos x)$$

=
$$(1 + 1)(1 + 1)$$

=
$$4$$

(b)