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1. Determine the limit of each of the following sequences, or show that the sequence
diverges. You may make use of the limit laws and theorems covered in class.

(a) an =
3n− 7

n+ 2
−
(

4

5

)n
for n ≥ 1.

(b) an =
√
n(
√
n+ 4−

√
n) for n ≥ 1.

(c) an =
7n

n!
for n ≥ 1.

(d) an =
sin n2

n
for n ≥ 1.

(e) an =
n

n+ n1/n
for n ≥ 1.

(f) an =

(
3 +

2

n2

)1/3

for n ≥ 1.

Solutions:

(a)

an =
3n− 7

n+ 2
−
(

4

5

)n
for n ≥ 1

lim
n→∞

an = lim
n→∞

[
3n− 7

n+ 2
−
(

4

5

)n]
= lim

n→∞

[
3− 7

n

1 + 2
n

−
(

4

5

)n]
=

3− 0

1 + 0
− 0

= 3

(b)

an =
√
n
(√

n+ 4−
√
n
)

for n ≥ 1

lim
n→∞

an = lim
n→∞

√
n
(√

n+ 4−
√
n
)
·
√
n+ 4 +

√
n√

n+ 4 +
√
n

= lim
n→∞

√
n · (n+ 4− n)√
n+ 4 +

√
n

= lim
n→∞

1 · 4√
1 +

4

n
+ 1

=
4√

1 + 0 + 1

= 2



(c)

an =
7n

n!
for n ≥ 1

Note that for n > 7,

an =
77

7!
· 7

8
· 7

9
· ... · 7

n

<
77

7!
· 1 · 1 · ... · 7

n

=
78

7!
· 1

n

Then for n > 7, We have

0 < an <
78

7!
· 1

n

Since lim
n→∞

78

7!
· 1

n
= 0, by sandwich theorem, lim

n→∞
an = 0.

(d)

an =
sin n2

n
for n ≥ 1

We have −1 ≤ sinn2 ≤ 1

Then
−1

n
≤ sinn2

n
≤ 1

n

Since lim
n→∞

−1

n
= 0 and lim

n→∞

1

n
= 0,

by sandwich theorem, lim
n→∞

an = 0.

(e)

an =
n

n+ n1/n
for n ≥ 1

We first prove that 0 < n1/n < 2.
Clearly, n1/n > 0 since n is positive.
We can use mathematical induction to prove that n < 2n, hence n1/n < 2.
For n = 1, 21 = 2 > 1
For n = k + 1, k + 1 ≤ 2k < 2 · 2k = 2k+1

Then 0 < n1/n < 2.

n

n+ 2
<

n

n+ n1/n
<

n

n+ 0
= 1

Since lim
n→∞

n

n+ 2
= 1,

by sandwich theorem, lim
n→∞

an = 1.



(f)

an =

(
3 +

2

n2

)1/3

for n ≥ 1

lim
n→∞

an = (3 + 0)1/3

= 31/3

2. Consider the following bounded and increasing sequence:

a1 =
√

3

a2 =
√

3 +
√

3

a3 =

√
3 +

√
3 +
√

3
...

an+1 =
√

3 + an
...

Answer the following questions:

(a) Show that the sequence converges and find its limit.

(b) Answer the same question when 3 is replaced by an arbitrary integer k ≥ 2.

Solutions:

(a) (i) Let P (n) be the statement that an+1 ≥ an.

• When n = 1,

a2 =

√
3 +
√

3 >
√

3 = a1

Hence, P (1) is true.

• Suppose P (m) is true, i.e.

am+1 ≥ am

• When n = m+ 1,

am+2 =
√

3 + am+1 ≥
√

3 + am = am+1

Hence, P (m+ 1) is true.

Therefore, P (n) is true for any n ≥ 1, i.e. {an} is increasing.

(ii) Let Q(n) be the statement that an+1 ≤ 1+
√
13

2
.

• When n = 1,

a1 =
√

3 <

√
13

4
=

√
13

2
<

1 +
√

13

2

Hence, Q(1) is true.



• Suppose Q(m) is true, i.e.

am ≤
1 +
√

13

2

• When n = m+ 1,

am+1 =
√

3 + am ≤

√
3 +

1 +
√

13

2
=

√
1 + 2

√
13 + 13

2
=

1 +
√

13

2

Hence, Q(m+ 1) is true.

Therefore, Q(n) is true for any n ≥ 1, i.e. an ≤ 1+
√
13

2
.

By Monotone Convergence Theorem, {an} is convergent.
Suppose lim

n→∞
an = L.

an+1 =
√

3 + an

lim
n→∞

an+1 = lim
n→∞

√
3 + an

L =
√

3 + L

L2 − L− 3 = 0

L =
1 +
√

13

2
or L =

1−
√

13

2

L = 1−
√
13

2
is rejected since an > 0 for all n. Hence, lim

n→∞
an = 1+

√
13

2
.

(b) For any integer k ≥ 2,

(i) Let P (n) be the statement that an+1 ≥ an.

• When n = 1,

a2 =

√
k +
√
k >
√
k = a1

Hence, P (1) is true.

• Suppose P (m) is true, i.e.

am+1 ≥ am

• When n = m+ 1,

am+2 =
√
k + am+1 ≥

√
k + am = am+1

Hence, P (m+ 1) is true.

Therefore, P (n) is true for any n ≥ 1, i.e. {an} is increasing.

(ii) Let Q(n) be the statement that an+1 ≤ 1+
√
1+4k
2

.

• When n = 1,

a1 =
√
k <

√
1 + 4k

4
=

√
1 + 4k

2
<

1 +
√

1 + 4k

2

Hence, Q(1) is true.



• Suppose Q(m) is true, i.e.

am ≤
1 +
√

1 + 4k

2

• When n = m+ 1,

am+1 =
√
k + am ≤

√
k +

1 +
√

1 + 4k

2
=

√
1 + 2

√
1 + 4k + 1 + 4k

2
=

1 +
√

1 + 4k

2

Hence, Q(m+ 1) is true.

Therefore, Q(n) is true for any n ≥ 1, i.e. an ≤ 1+
√
1+4k
2

.

By Monotone Convergence Theorem, {an} is convergent.
Suppose lim

n→∞
an = L.

an+1 =
√
k + an

lim
n→∞

an+1 = lim
n→∞

√
k + an

L =
√
k + L

L2 − L− k = 0

L =
1 +
√

1 + 4k

2
or L =

1−
√

1 + 4k

2

L = 1−
√
1+4k
2

is rejected since an > 0 for all n. Hence, lim
n→∞

an = 1+
√
1+4k
2

.

3. For this problem, you may make use of the following mathematical result:

Fact. Let a, r be real numbers, with r 6= 1. Let {Sn} be the geometric series
defined as follows:

Sn =
n∑
k=0

ark = a+ ar + ar2 + · · ·+ arn, n = 0, 1, 2, . . . .

Then, Sn = a

(
1− rn+1

1− r

)
.

(a) Verify that {Sn} converges to
a

1− r
, whenever |r| < 1.

(b) Use the result of Part (a) to find the limit of the sequence {an}, where

an = 1 +
3

4
+

3

42
+ · · ·+ 3

4n
.

(c) Use the result of Part (a) to verify that the repeating decimal 1.777 · · · , often

written as 1.7̇, is equal to
16

9
.

Solutions:



(a) When |r| < 1, we have 1− r 6= 0 and lim
n→∞

rn+1 = 0.

Then lim
n→∞

Sn = lim
n→∞

a
(

1−rn+1

1−r

)
= a

(
1− lim

n→∞
rn+1

1−r

)
= a

(
1−0
1−r

)
= a

1−r .

(b) Let a = 3 and r = 1
4
. Then an = Sn − 2.

Then lim
n→∞

an = lim
n→∞

Sn − 2 = a
1−r − 2 = 3

1− 1
4

− 2 = 2.

(c) Let a = 7 and r = 1
10

. Then an = Sn − 6.

Then 1.7̇ = lim
n→∞

an = lim
n→∞

Sn − 6 = a
1−r − 6 = 7

1− 1
10

− 6 = 16
9

.

4. A sequence {an} is defined recursively by the following equations:{
a1 = 1,

an+1 =
√

7 + 2an for n ≥ 1.

Answer the following questions:

(a) Show that {an} is bounded and monotonic and hence convergent.

(b) Find the limit of {an}.

Solutions:

(a) (i) Let P (n) be the statement that an+1 ≥ an.

• When n = 1,
a2 =

√
7 + 2 = 3 > 1 = a1

Hence, P (1) is true.

• Suppose P (m) is true, i.e.

am+1 ≥ am

• When n = m+ 1,

am+2 =
√

7 + 2am+1 ≥
√

7 + 2am = am+1

Hence, P (m+ 1) is true.

Therefore, P (n) is true for any n ≥ 1, i.e. {an} is increasing.

(ii) Let Q(n) be the statement that an+1 ≤ 1 + 2
√

2.

• When n = 1,
a1 = 1 < 1 + 2

√
2

Hence, Q(1) is true.

• Suppose Q(m) is true, i.e.

am ≤ 1 + 2
√

2



• When n = m+ 1,

am+1 =
√

7 + 2am ≤
√

7 + 2 + 4
√

2 =

√
1 + 2× 2

√
2 + 8 = 1 + 2

√
2

Hence, Q(m+ 1) is true.

Therefore, Q(n) is true for any n ≥ 1, i.e. an ≤ 1 + 2
√

2.

By Monotone Convergence Theorem, {an} is convergent.

(b) Suppose lim
n→∞

an = L.

an+1 =
√

7 + 2an

lim
n→∞

an+1 = lim
n→∞

√
7 + 2an

L =
√

7 + 2L

L2 − 2L− 7 = 0

L = 1 + 2
√

2 or L = 1− 2
√

2

L = 1− 2
√

2 is rejected since an > 0 for all n. Hence, lim
n→∞

an = 1 + 2
√

2.

5. A sequence is defined by x1 = 1, xn+1 = 2
3
xn + 9

x2n
for n ≥ 1.

(a) (i) Show that
2

3
x+

9

x2
− 3 =

(x− 3)2(2x+ 3)

3x2
.

(ii) Show that xn ≥ 3 for n ≥ 2.

(b) (i) Show that
2

3
x+

9

x2
≤ x

for x ≥ 3.

(ii) Prove that xn+1 ≤ xn for n ≥ 2.

(c) Hence show that {xn} converges and find lim
n→∞

xn.

Solutions:

(a) (i)

2

3
x+

9

x2
− 3 =

2x3 + 27− 9x2

3x2

=
(2x+ 3)(x2 − 6x+ 9)

3x2

=
(x− 3)2(2x+ 3)

3x2

(ii) Let P (n) be the statement that xn ≥ 3.



• When n = 2,

x2 =
2

3
× 1 +

9

12
=

29

3
> 3

Hence, P (2) is true.

• Suppose P (m) is true, i.e.
xm ≥ 3

• When n = m+ 1,

xm+1 − 3 =
2

3
xm +

9

x2m
− 3 =

(xm − 3)2(2xm + 3)

3x2m
≥ 0

xm+1 ≥ 3

Hence, P (m+ 1) is true.

Therefore, P (n) is true for any n ≥ 2, i.e. xn ≥ 3.

(b) (i)

2

3
x+

9

x2
− x =

2x3 + 27− 3x3

3x2

=
27− x3

3x2

≤ 0

for x ≥ 3.
Then 2

3
x+ 9

x2
≤ x for x ≥ 3.

(ii) For n ≥ 2, xn ≥ 3 by (a). Then

xn+1 =
2

3
xn +

9

x2n
≤ xn

by (i).

(c) By Monotone Convergence Theorem, {xn} is convergent.
Suppose lim

n→∞
xn = L.

xn+1 =
2

3
xn +

9

x2n

lim
n→∞

xn+1 = lim
n→∞

(
2

3
xn +

9

x2n

)
L =

2

3
L+

9

L2

2

3
L+

9

L2
− L = 0

27− L3

3L2
= 0

L = 3

Hence, lim
n→∞

xn = 3.



6. For each of the given functions, f , find its natural domain, that is, the largest subset
of R on which the expression defining f may be validly computed. Please express
your answer in the form of a single interval, or a union of disjoint intervals. For
example: (−∞, 2) ∪ [5, 11).

(a) f(x) =
1

2

√
4− x2.

(b) f(x) =

√
x− 2

x+ 2
.

(c) f(x) = ln (3x2 − 4x+ 5).

(d) f(x) = ln(
√
x− 4 +

√
6− x).

(e) f(x) = sin2 x+ cos4 x.

(f) f(x) =
1

1 + cos x
.

(g) f(x) = 1− |x|.

Solutions:

(a)

f(x) =
1

2

√
4− x2

It implies the condition 4− x2 ≥ 0,−2 ≤ x ≤ 2.
Hence the largest domain is [−2, 2]



(b)

f(x) =

√
x− 2

x+ 2

It implies two conditions x 6= −2 and
x− 2

x+ 2
≥ 0.

For
x− 2

x+ 2
≥ 0,

x− 2

x+ 2
≥ 0

x− 2

x+ 2
· (x+ 2)2 ≥ 0

(x− 2)(x+ 2) ≥ 0

x ≤ −2 or x ≥ 2

Hence the largest domain is (−∞,−2) ∪ [2,∞)

(c)

f(x) = ln(3x2 − 4x+ 5)

It implies the condition 3x2 − 4x+ 5 > 0.
Note that ∆ = (−4)2 − 4 · 3 · 5 = −44 < 0, so the equation has no real roots.
Then 3x2 − 4x+ 5 > 0 for any x.
Hence the largest domain is (−∞,∞)



(d)

f(x) = ln(
√
x− 4 +

√
6− x)

It implies three conditions x− 4 ≥ 0, 6− x ≥ 0, and
√
x− 4 +

√
6− x > 0.

We get 4 ≤ x ≤ 6 from the first two conditions.
For the third condition, note that

√
x− 4 ≥ 0 and

√
6− x ≥ 0, and they

cannot be 0 simultaneously, so any number satisfying 4 ≤ x ≤ 6 works.
Hence the largest domain is [4, 6]



(e)

f(x) = sin2 x+ cos4 x

Note that sinx and cosx do not impose any conditions on domain.
Hence the largest domain is (−∞,∞)

(f)

f(x) =
1

1 + cos x

It implies the condition cosx 6= −1.
Then x 6= π + 2nπ, where n is any integer.
To write the largest domain in disjoint interval, it involves infinitely many
intervals of the form ((2n+ 1)π, (2n+ 3)π)
We can write it as

⋃
n∈Z

((2n+ 1)π, (2n+ 3)π)



(g)

f(x) = 1− |x|

Note that |x| do not impose any conditions on domain.
Hence the largest domain is (−∞,∞)

7. Determine whether the given function, f , is injective, surjective, bijective, or none
of these. Explain clearly.



(a) f : R→ R, where f(x) = 2x− 1.

(b) f : {x| x 6= 1} → R, where f(x) =
x2 − 1

x− 1
.

(c) f : R→ R, where f(x) = 3
√
x.

(d) f : [−1, 1]→ [0, 4), where f(x) = x2.

Solutions:

(a) For any x1, x2 ∈ R with x1 6= x2, we have f(x1) = 2x1 − 1 6= f(x2) = 2x2 − 1.
Then f(x) is injective.
For any real number y ∈ R, there exists x = y+1

2
∈ R such that f(x) = y.

Then f(x) is surjective.
Thus, f(x) is bijective since it is both injective and surjective.

(b) f(x) = x+ 1, for x ∈ (−∞, 1) ∪ (1,+∞).
For any x1, x2 ∈ (−∞, 1) ∪ (1,+∞) with x1 6= x2, we have f(x1) = x1 + 1 6=
f(x2) = x2 + 1. Then f(x) is injective.
For real number y = 2, there exists no x ∈ (−∞, 1) ∪ (1,+∞) such that
f(x) = y. For otherwise, x2 − 1 = 2(x − 1) =⇒ (x − 1)2 = 0 =⇒ x = 1,
which is a contradiction. So f(x) is not surjective.
Thus, f(x) is not bijective.

(c) For any x1, x2 ∈ R with x1 6= x2, we have f(x1) = 3
√
x1 6= f(x2) = 3

√
x2. Then

f(x) is injective.
For any real number y ∈ R, there exists x = y3 ∈ R such that f(x) = y. Then
f(x) is surjective.
Thus, f(x) is bijective since it is both injective and surjective.

(d) For x1 = −x2, x1, x2 ∈ [−1, 1], we have f(x1) = f(x2). Then f(x) is not
injective.
For y < 0, there exists no x ∈ [−1, 1] such that f(x) = y. Then, f(x) is not
surjective.
Thus, f(x) is not bijective.

8. Determine whether the given function, f , is increasing, strictly increasing, decreas-
ing, strictly decreasing, bounded, bounded above, or bounded below.

(a) f : [0,+∞)→ R, where f(x) =
x

x+ 1
.

(b) f : R+ → R, where f(x) =
1

x
.

Solutions:



(a)

f(x) = 1− 1

x+ 1

For any x, y with x < y and x, y ∈ [0,+∞), we have f(x) < f(y). Then f(x)
is strictly increasing.
For x ∈ [0,+∞), 0 = f(0) ≤ f(x) ≤ lim

x→+∞
f(x) = 1. Then f(x) is bounded.

(b) For any x, y with x < y and x, y ∈ (0,+∞), we have f(x) > f(y). Then f(x)
is strictly decreasing.
Clearly, f(x) = 1/x > 0 for any x ∈ R+. So f is bounded below by 0. On the
other hand, f is not bounded above. Otherwise, if f(x) ≤ M for any x ∈ R+,
then, in particular, M + 1 = f(1/(M + 1)) ≤M , which is a contradiction.

9. Find whether the function is even, odd or neither:

(a) f(x) = x2 − |x|
(b) f(x) = log2

(
x+
√
x2 + 1

)
(c) f(x) = x

(
ax − 1

ax + 1

)
(d) f(x) = sin x+ cos x

Solutions:

(a)
f(−x) = x2 − |x| = f(x)

Thus, f(x) is even.

(b)

f(−x) = log2

(
−x+

√
x2 + 1

)
= log2

(
(−x+

√
x2 + 1) · x+

√
x2 + 1

x+
√
x2 + 1

)

= log2

(
1

x+
√
x2 + 1

)
= −f(x)

Thus, f(x) is odd.

(c)

f(−x) = −x(
a−x − 1

a−x + 1
)

= x(
ax − 1

ax + 1
)

= f(x)

Thus, f(x) is even.



(d)

f(−x) = sin(−x) + cos(−x)

= − sinx+ cosx

f(x) is neither even nor odd since f(−x) 6= f(x) and f(−x) 6= −f(x).

10. Evaluate the limit, if it exists. If not, determine whether the one-sided limits exist
(finite or infinite).

(a) lim
x→3

x3 − 3x2 + 5x− 15

x2 − x− 12
.

(b) lim
x→1/2

1− 32x5

1− 8x3
.

(c) lim
x→1

x−
√

2− x2

2x−
√

2 + 2x2
.

(d) lim
x→1

√
x2 + 8−

√
10− x2√

x2 + 3−
√

5− x2
.

(e) lim
x→1

(
2

1− x2
+

1

x− 1

)
.

(f) lim
x→a

(
2a

x2 − a2
− 1

x− a

)
.

(g) lim
x→a

(
xm − am

xn − an

)
.

(h) lim
x→1

(
x− 1

x1/4 − 1

)
.

(i) lim
x→0

(√
x+ 1− 1

ln (1 + x)

)
.

(j) lim
x→0

(
x7/10 + 3x4/3 + 2x

x1/3 + 4x2/3 + 2x1/5

)
.

Solutions:

(a)

lim
x→3

x3 − 3x2 + 5x− 15

x2 − x− 12

=
33 − 3(32) + 5(3)− 15

32 − 3− 12

= 0



(b)

lim
x→1/2

1− 32x5

1− 8x3

= lim
x→1/2

(1− 2x)(1 + 2x+ 4x2 + 8x3 + 16x4)

(1− 2x)(1 + 2x+ 4x2)

= lim
x→1/2

1 + 2x+ 4x2 + 8x3 + 16x4

1 + 2x+ 4x2

=
1 + 2(

1

2
) + 4(

1

2
)2 + 8(

1

2
)3 + 16(

1

2
)4

1 + 2(
1

2
) + 4(

1

2
)2

=
5

3

(c)

lim
x→1

x−
√

2− x2

2x−
√

2 + 2x2

= lim
x→1

x−
√

2− x2

2x−
√

2 + 2x2
· x+

√
2− x2

2x+
√

2 + 2x2
· 2x+

√
2 + 2x2

x+
√

2− x2

= lim
x→1

x2 − (2− x2)
4x2 − (2 + 2x2)

· 2x+
√

2 + 2x2

x+
√

2− x2

= lim
x→1

2x+
√

2 + 2x2

x+
√

2− x2

=
2(1) +

√
2 + 2(1)2

1 +
√

2− 12

= 2

(d)

lim
x→1

√
x2 + 8−

√
10− x2√

x2 + 3−
√

5− x2

= lim
x→1

√
x2 + 8−

√
10− x2√

x2 + 3−
√

5− x2
·
√
x2 + 8 +

√
10− x2√

x2 + 3 +
√

5− x2
·
√
x2 + 3 +

√
5− x2√

x2 + 8 +
√

10− x2

= lim
x→1

x2 + 8− (10− x2)
x2 + 3− (5− x2)

·
√
x2 + 3 +

√
5− x2√

x2 + 8 +
√

10− x2

= lim
x→1

√
x2 + 3 +

√
5− x2√

x2 + 8 +
√

10− x2

=

√
12 + 3 +

√
5− 12

√
12 + 8 +

√
10− 12

=
2

3



(e)

lim
x→1

2

1− x2
+

1

x− 1

= lim
x→1

2− (1 + x)

(1− x)(1 + x)

= lim
x→1

1

1 + x

=
1

1 + 1

=
1

2

(f)

lim
x→a

2a

x2 − a2
− 1

x− a

= lim
x→a

2a− (x+ a)

(x− a)(x+ a)

= lim
x→a

−1

x+ a

(Case 1) If a 6= 0,

lim
x→a

−1

x+ a

=
−1

a+ a

= − 1

2a

(Case 2) If a = 0, the limit does not exist since

lim
x→a−

−1

x+ a
= lim

x→0−

−1

x
= +∞

while

lim
x→a+

−1

x+ a
= lim

x→0+

−1

x
= −∞

(g)

lim
x→a

xm − am

xn − an

(Case 1) Suppose a 6= 0.

lim
x→a

xm − am

xn − an

= lim
x→a

mxm−1

nxn−1
(l’Hôpital’s rule)

=
m

n
am−n



Alternative answer without using l’Hôpital’s rule:

If m = 0, then
xm − am

x− a
=

1− 1

x− a
= 0.

If m > 0, then

lim
x→a

xm − am

x− a
= lim

x→a

m−1∑
k=0

xkam−1−k =
m−1∑
k=0

am−1 = mam−1.

If m < 0, then by the above limit,

lim
x→a

xm − am

x− a
= lim

x→a
−xmam · x

−m − a−m

x− a
= −a2m(−m)a−m−1 = mam−1.

Hence, if n 6= 0, we have

lim
x→a

xm − am

xn − an
= lim

x→a

xm − am

x− a
· x− a
xn − an

=
m

n
am−n.

(Case 2) If a = 0 and m = n,

lim
x→a

xm − am

xn − an
= 1

(Case 3) If a = 0 and m > n,

lim
x→a

xm − am

xn − an
= lim

x→0
xm−n = 0

(Case 4) If a = 0 and m < n, the limit does not exist since

lim
x→a+

xm − am

xn − an
= lim

x→0+

1

xn−m
= +∞,

while

lim
x→a−

xm − am

xn − an
= lim

x→0−

1

xn−m
= −∞.

(h)

lim
x→1

x− 1

x1/4 − 1

= lim
x→1

(x1/4 − 1)(x1/4 + 1)(x1/2 + 1)

x1/4 − 1

= lim
x→1

(x1/4 + 1)(x1/2 + 1)

= (1 + 1)(1 + 1)

= 4



(i)

lim
x→0

√
x+ 1− 1

ln(x+ 1)

= lim
x→0

(2
√
x+ 1)−1

(x+ 1)−1
(l’Hôpital’s rule)

=

√
0 + 1

2

=
1

2

See 11(h) for an answer without using l’Hôpital’s rule.

(j)

lim
x→0

x7/10 + 3x4/3 + 2x

x1/3 + 4x2/3 + 2x1/5

= lim
x→0

x1/2 + 3x17/15 + 2x4/5

x2/15 + 4x7/15 + 2

=
0 + 0 + 0

0 + 0 + 2

= 0

11. Without using l’Hôpital’s rule, evaluate the limit, if it exists. If not, determine
whether the one-sided limits exist (finite or infinite).

(a) lim
x→∞

√
x4 + 1−

√
x4 − 1

x
.

(b) lim
x→∞

√
3x2 − 1−

√
2x2 + 1

4x+ 3
.

(c) lim
x→π/2

(
1− sin3 x

1− sin2 x

)
.

(d) lim
x→π/4

(
sin 2x− (1 + cos 2x

cos x− sin x

)
.

(e) lim
x→π/4

√
2− cos x− sin x

(4x− π)2
.

(f) lim
x→0

sin 7x− sin x

sin 6x
.

(g) lim
x→0

(
1 + x

1− x

)1/x

.

(h) lim
x→0

(√
x+ 1− 1

ln (1 + x)

)
.



(i) lim
x→0

(
eax − ea

x

)
where a is a constant.

Solutions:

(a)

lim
x→∞

√
x4 + 1−

√
x4 − 1

x
= lim

x→∞

(
√
x4 + 1−

√
x4 − 1)(

√
x4 + 1 +

√
x4 − 1)

x(
√
x4 + 1 +

√
x4 − 1)

= lim
x→∞

2

x(
√
x4 + 1 +

√
x4 − 1)

= 0

(b)

lim
x→∞

√
3x2 − 1−

√
2x2 + 1

4x+ 3
= lim

x→∞

√
3− 1

x2
−
√

2 +
1

x2

4 +
3

x

=

√
3−
√

2

4

(c)
x3 − 1 = (x− 1)(x2 + x+ 1)

lim
x→π/2

(
1− sin3 x

1− sin2 x

)
= lim

x→π/2

(1− sinx)(1 + sin x+ sinx)

(1− sinx)(1 + sin x)

= lim
x→π/2

(1 + sin x+ sinx)

(1 + sin x)

= lim
x→π/2

1 + 2 sinx

1 + sin x

=
3

2

(d)
1 + 2 cos 2x = 1 + cos2 x− sin2 x

sin 2x = 2 sin x cosx

lim
x→π/4

(
sin 2x− (1 + cos 2x)

cos x− sin x

)
= lim

x→π/4

2 cosx(sinx− cosx)

cosx− sinx

= lim
x→π/4

−2 cosx

= −
√

2

(e)

a cosx+ b sinx =
√
a2 + b2 sin(x+ tan−1

a

b
),

for b 6= 0 and −π
2
< tan−1 a

b
< π

2
.

1− cosx = 2 sin2(
x

2
)



Thus, we have

cosx+ sinx =
√

2 sin(x+
π

4
)

=
√

2 cos(x− π

4
)

lim
x→π/4

√
2− cos x− sin x

(4x− π)2
= lim

x→π/4

√
2−
√

2 cos(x− π
4
)

(4x− π)2

= lim
x→π/4

√
2

16
×

1− cos(x− π
4
)

(x− π
4
)2

=

√
2

16
lim
x→π/4

2 sin2(x
2
− π

8
)

4(x
2
− π

8
)2

=

√
2

32
lim
x→π/4

sin2(x
2
− π

8
)

(x
2
− π

8
)2

=

√
2

32
lim
x→π/4

(
sin(x

2
− π

8
)

x
2
− π

8

)2

=

√
2

32

(f)

lim
x→0

sin 7x− sin x

sin 6x
= lim

x→0

sin 6x cosx+ cos 6x sinx− sinx

sin 6x

= lim
x→0

(cosx+
sinx(cos 6x− 1)

sin 6x
)

= lim
x→0

cosx+ lim
x→0

sinx(−2 sin2 3x)

2 sin 3x cos 3x
= lim

x→0
cosx− lim

x→0
sinx tan 3x

= 1 + 0 = 1

(g)

lim
x→0

(
1 + x

1− x

)1/x

= lim
x→0

(1 + x)1/x (1− x)1/(−x)

= e · e
= e2.



(h)

lim
x→0

(√
x+ 1− 1

ln (1 + x)

)
= lim

x→0

x

ln(x+ 1)
·
√
x+ 1− 1

x

= lim
x→0

x

ln(x+ 1)
· (
√
x+ 1− 1)(

√
x+ 1 + 1)

x(
√
x+ 1 + 1))

= lim
x→0

x

ln(x+ 1)
· 1√

x+ 1 + 1

= lim
x→0

x

ln(x+ 1)
· 1

(
√
x+ 1 + 1)

=
1

2

(i) First assume a 6= 0.

lim
x→0

(
eax − ea

x

)
= a lim

x→0

eax − 1 + 1− ea

ax

= a(lim
x→0

(
eax − 1

ax
+

1− ea

ax
))

Now lim
x→0

eax − 1

ax
= 1 while

lim
x→0+

1− ea

x
=

{
+∞ if a < 0

−∞ if a > 0
and lim

x→0−

1− ea

x
=

{
−∞ if a < 0

+∞ if a > 0

Thus

lim
x→0+

(
eax − ea

x

)
=


+∞ if a < 0

0 if a = 0

−∞ if a > 0

and lim
x→0−

(
eax − ea

x

)
=


−∞ if a < 0

0 if a = 0

+∞ if a > 0

.

12. Evaluate the following limits.

(a) lim
x→0−

x| sin 1
x
|

(b) lim
x→+∞

sin tanx+tan sinx
x+1

Solutions:

(a)

lim
x→0−

x

∣∣∣∣sin 1

x

∣∣∣∣
Note that 0 ≤

∣∣∣∣sin 1

x

∣∣∣∣ ≤ 1

Then −x ≤ x

∣∣∣∣sin 1

x

∣∣∣∣ ≤ x



Since lim
x→0
−x = 0 and lim

x→0
x = 0,

by sandwich theorem, lim
x→0

x

∣∣∣∣sin 1

x

∣∣∣∣ = 0

Then lim
x→0−

x

∣∣∣∣sin 1

x

∣∣∣∣ = 0

(b)

lim
x→+∞

sin tanx+ tan sinx

x+ 1

Note that −1 ≤ sinx ≤ 1
Then − tan 1 ≤ tan sinx ≤ tan 1

−1 + tan 1

x+ 1
≤ sin tanx+ tan sinx

x+ 1
≤ 1 + tan 1

x+ 1
for x > 0

Since lim
x→+∞

−1 + tan 1

x+ 1
= 0 and lim

x→+∞

1 + tan 1

x+ 1
= 0,

by sandwich theorem, lim
x→+∞

sin tanx+ tan sinx

x+ 1
= 0

13. Evaluate the following limits.

(a) lim
x→0

tanx− sinx

sin3 x

(b) lim
x→0

tan2 x

sin(x2)

(c) lim
x→0

sin2 x

1−
√

cosx

Solutions:

(a)

lim
x→0

tanx− sinx

sin3 x

= lim
x→0

1− cosx

sin2 x cosx

= lim
x→0

1− cosx

(1− cosx)(1 + cos x) cosx

= lim
x→0

1

(1 + cos x) cosx

=
1

(1 + 1)(1)

=
1

2



(b)

lim
x→0

tan2 x

sin(x2)

= lim
x→0

tan2 x

x2

sin(x2)

x2

= lim
x→0

sinx

x

sinx

x

1

cos2 x
sin(x2)

x2

=

(1)(1)

(
1

1

)
1

= 1

(c)

lim
x→0

sin2 x

1−
√

cosx

= lim
x→0

sin2 x

1−
√

cosx
· 1 +

√
cosx

1 +
√

cosx
· 1 + cos x

1 + cos x

= lim
x→0

sin2 x

1− cos2 x
(1 +

√
cosx)(1 + cos x)

= lim
x→0

(1 +
√

cosx)(1 + cos x)

= (1 + 1)(1 + 1)

= 4


