THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics [MATH1010 University Mathematics](https://www.math.cuhk.edu.hk/~math1010) 2020-2021 Term 1 [Homework Assignment 1](https://www.math.cuhk.edu.hk/~math1010/homework.html) Solution of Homework Assignment 1

If you spots any errors/typos, please email us at math1010@math.cuhk.edu.hk

1. Determine the limit of each of the following sequences, or show that the sequence diverges. You may make use of the limit laws and theorems covered in class.

(a)
$$
a_n = \frac{3n - 7}{n + 2} - \left(\frac{4}{5}\right)^n
$$
 for $n \ge 1$.
\n(b) $a_n = \sqrt{n}(\sqrt{n + 4} - \sqrt{n})$ for $n \ge 1$.
\n(c) $a_n = \frac{7^n}{n!}$ for $n \ge 1$.
\n(d) $a_n = \frac{\sin n^2}{n}$ for $n \ge 1$.
\n(e) $a_n = \frac{n}{n + n^{1/n}}$ for $n \ge 1$.
\n(f) $a_n = \left(3 + \frac{2}{n^2}\right)^{1/3}$ for $n \ge 1$.

Solutions:

(a)

$$
a_n = \frac{3n-7}{n+2} - \left(\frac{4}{5}\right)^n \quad \text{for } n \ge 1
$$

$$
\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left[\frac{3n-7}{n+2} - \left(\frac{4}{5}\right)^n \right]
$$

$$
= \lim_{n \to \infty} \left[\frac{3-\frac{7}{n}}{1+\frac{2}{n}} - \left(\frac{4}{5}\right)^n \right]
$$

$$
= \frac{3-0}{1+0} - 0
$$

= 3

(b)

$$
a_n = \sqrt{n} \left(\sqrt{n+4} - \sqrt{n} \right) \text{ for } n \ge 1
$$

$$
\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+4} - \sqrt{n} \right) \cdot \frac{\sqrt{n+4} + \sqrt{n}}{\sqrt{n+4} + \sqrt{n}}
$$

$$
= \lim_{n \to \infty} \frac{\sqrt{n} \cdot (n+4-n)}{\sqrt{n+4} + \sqrt{n}}
$$

$$
= \lim_{n \to \infty} \frac{1 \cdot 4}{\sqrt{1 + \frac{4}{n}} + 1}
$$

$$
= \frac{4}{\sqrt{1+0} + 1}
$$

$$
= 2
$$

$$
a_n = \frac{7^n}{n!} \text{ for } n \ge 1
$$

Note that for $n > 7$,

$$
a_n = \frac{7^7}{7!} \cdot \frac{7}{8} \cdot \frac{7}{9} \cdot \dots \cdot \frac{7}{n}
$$

$$
< \frac{7^7}{7!} \cdot 1 \cdot 1 \cdot \dots \cdot \frac{7}{n}
$$

$$
= \frac{7^8}{7!} \cdot \frac{1}{n}
$$

Then for $n > 7$, We have

$$
0 < a_n < \frac{7^8}{7!} \cdot \frac{1}{n}
$$

Since $\lim_{n\to\infty}$ 7 8 $rac{7^8}{7!} \cdot \frac{1}{n}$ $\frac{1}{n} = 0$, by sandwich theorem, $\lim_{n \to \infty} a_n = 0$.

(d)

$$
a_n = \frac{\sin n^2}{n} \text{ for } n \ge 1
$$

We have $-1 \leq \sin n^2 \leq 1$ Then $\frac{-1}{ }$ n $\leq \frac{\sin n^2}{n}$ \overline{n} \leq $\frac{1}{1}$ n Since $\lim_{n\to\infty}$ −1 $\frac{1}{n} = 0$ and $\lim_{n \to \infty}$ 1 n $= 0,$ by sandwich theorem, $\lim_{n \to \infty} a_n = 0$.

$$
a_n = \frac{n}{n + n^{1/n}} \text{ for } n \ge 1
$$

We first prove that $0 < n^{1/n} < 2$. Clearly, $n^{1/n} > 0$ since *n* is positive. We can use mathematical induction to prove that $n < 2ⁿ$, hence $n^{1/n} < 2$. For $n = 1, 2^1 = 2 > 1$ For $n = k + 1, k + 1 \leq 2k < 2 \cdot 2^k = 2^{k+1}$ Then $0 < n^{1/n} < 2$.

$$
\frac{n}{n+2}<\frac{n}{n+n^{1/n}}<\frac{n}{n+0}=1
$$

Since $\lim_{n\to\infty}$ n $n+2$ $= 1,$ by sandwich theorem, $\lim_{n\to\infty} a_n = 1$. (f)

$$
a_n = \left(3 + \frac{2}{n^2}\right)^{1/3} \text{ for } n \ge 1
$$

$$
\lim_{n \to \infty} a_n = (3 + 0)^{1/3}
$$

$$
= 3^{1/3}
$$

2. Consider the following bounded and increasing sequence:

$$
\begin{cases}\na_1 = \sqrt{3} \\
a_2 = \sqrt{3 + \sqrt{3}} \\
a_3 = \sqrt{3 + \sqrt{3 + \sqrt{3}}}\n\end{cases}
$$
\n
$$
\vdots
$$
\n
$$
a_{n+1} = \sqrt{3 + a_n}
$$
\n
$$
\vdots
$$

Answer the following questions:

- (a) Show that the sequence converges and find its limit.
- (b) Answer the same question when 3 is replaced by an arbitrary integer $k \geq 2$.

Solutions:

(a) (i) Let $P(n)$ be the statement that $a_{n+1} \ge a_n$. • When $n = 1$,

$$
a_2 = \sqrt{3 + \sqrt{3}} > \sqrt{3} = a_1
$$

Hence, $P(1)$ is true.

• Suppose $P(m)$ is true, i.e.

 $a_{m+1} \geq a_m$

• When $n = m + 1$,

$$
a_{m+2} = \sqrt{3 + a_{m+1}} \ge \sqrt{3 + a_m} = a_{m+1}
$$

Hence, $P(m + 1)$ is true.

Therefore, $P(n)$ is true for any $n \geq 1$, i.e. $\{a_n\}$ is increasing. (ii) Let $Q(n)$ be the statement that $a_{n+1} \leq \frac{1+\sqrt{13}}{2}$ $\frac{\sqrt{13}}{2}$.

• When $n = 1$,

$$
a_1 = \sqrt{3} < \sqrt{\frac{13}{4}} = \frac{\sqrt{13}}{2} < \frac{1 + \sqrt{13}}{2}
$$

Hence, $Q(1)$ is true.

• Suppose $Q(m)$ is true, i.e.

$$
a_m \le \frac{1 + \sqrt{13}}{2}
$$

• When $n = m + 1$,

$$
a_{m+1} = \sqrt{3 + a_m} \le \sqrt{3 + \frac{1 + \sqrt{13}}{2}} = \frac{\sqrt{1 + 2\sqrt{13} + 13}}{2} = \frac{1 + \sqrt{13}}{2}
$$

Hence, $Q(m+1)$ is true.

Therefore, $Q(n)$ is true for any $n \geq 1$, i.e. $a_n \leq \frac{1+\sqrt{13}}{2}$ $\frac{\sqrt{13}}{2}$. By Monotone Convergence Theorem, $\{a_n\}$ is convergent. Suppose $\lim_{n \to \infty} a_n = L$.

$$
a_{n+1} = \sqrt{3 + a_n}
$$

$$
\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{3 + a_n}
$$

$$
L = \sqrt{3 + L}
$$

$$
L^2 - L - 3 = 0
$$

$$
L = \frac{1 + \sqrt{13}}{2} \quad \text{or} \quad L = \frac{1 - \sqrt{13}}{2}
$$

 $L = \frac{1-\sqrt{13}}{2}$ $\frac{\sqrt{13}}{2}$ is rejected since $a_n > 0$ for all *n*. Hence, $\lim_{n \to \infty} a_n = \frac{1 + \sqrt{13}}{2}$ $\frac{\sqrt{13}}{2}$.

- (b) For any integer $k \geq 2$,
	- (i) Let $P(n)$ be the statement that $a_{n+1} \ge a_n$.
		- When $n = 1$,

$$
a_2 = \sqrt{k + \sqrt{k}} > \sqrt{k} = a_1
$$

Hence, $P(1)$ is true.

• Suppose $P(m)$ is true, i.e.

 $a_{m+1} \geq a_m$

• When $n = m + 1$,

$$
a_{m+2} = \sqrt{k + a_{m+1}} \ge \sqrt{k + a_m} = a_{m+1}
$$

Hence, $P(m + 1)$ is true.

Therefore, $P(n)$ is true for any $n \geq 1$, i.e. $\{a_n\}$ is increasing. (ii) Let $Q(n)$ be the statement that $a_{n+1} \leq \frac{1+\sqrt{1+4k}}{2}$ $\frac{1+4k}{2}$.

• When $n = 1$,

$$
a_1 = \sqrt{k} < \sqrt{\frac{1+4k}{4}} = \frac{\sqrt{1+4k}}{2} < \frac{1+\sqrt{1+4k}}{2}
$$

Hence, $Q(1)$ is true.

• Suppose $Q(m)$ is true, i.e.

$$
a_m \le \frac{1 + \sqrt{1 + 4k}}{2}
$$

• When $n = m + 1$,

$$
a_{m+1} = \sqrt{k + a_m} \le \sqrt{k + \frac{1 + \sqrt{1 + 4k}}{2}} = \frac{\sqrt{1 + 2\sqrt{1 + 4k} + 1 + 4k}}{2} = \frac{1 + \sqrt{1 + 4k}}{2}
$$

Hence, $Q(m+1)$ is true.

Therefore, $Q(n)$ is true for any $n \geq 1$, i.e. $a_n \leq \frac{1+\sqrt{1+4k}}{2}$ $\frac{1+4k}{2}$.

By Monotone Convergence Theorem, $\{a_n\}$ is convergent. Suppose $\lim_{n \to \infty} a_n = L$.

$$
a_{n+1} = \sqrt{k + a_n}
$$

\n
$$
\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{k + a_n}
$$

\n
$$
L = \sqrt{k + L}
$$

\n
$$
L^2 - L - k = 0
$$

\n
$$
L = \frac{1 + \sqrt{1 + 4k}}{2}
$$
 or
$$
L = \frac{1 - \sqrt{1 + 4k}}{2}
$$

\n
$$
L = \frac{1 - \sqrt{1 + 4k}}{2}
$$
 is rejected since $a_n > 0$ for all *n*. Hence, $\lim_{n \to \infty} a_n = \frac{1 + \sqrt{1 + 4k}}{2}$.

3. For this problem, you may make use of the following mathematical result:

Fact. Let a, r be real numbers, with $r \neq 1$. Let $\{S_n\}$ be the geometric series defined as follows:

$$
S_n = \sum_{k=0}^n ar^k = a + ar + ar^2 + \dots + ar^n, \quad n = 0, 1, 2, \dots
$$

$$
a = a \left(\frac{1 - r^{n+1}}{1 - r} \right).
$$

Then, S_n $1 - r$.

(a) Verify that $\{S_n\}$ converges to $\frac{a}{1}$ $1 - r$, whenever $|r| < 1$.

(b) Use the result of Part (a) to find the limit of the sequence $\{a_n\}$, where

$$
a_n = 1 + \frac{3}{4} + \frac{3}{4^2} + \dots + \frac{3}{4^n}.
$$

(c) Use the result of Part (a) to verify that the repeating decimal $1.777 \cdots$, often written as 1.7, is equal to $\frac{16}{9}$ 9 .

Solutions:

- (a) When $|r| < 1$, we have $1 r \neq 0$ and $\lim_{n \to \infty} r^{n+1} = 0$. Then $\lim_{n \to \infty} S_n = \lim_{n \to \infty} a \left(\frac{1 - r^{n+1}}{1 - r} \right)$ $\frac{-r^{n+1}}{1-r}\bigg)=a$ $\int 1-\lim_{n\to\infty}r^{n+1}$ $1-r$ \setminus $= a \left(\frac{1-0}{1-x} \right)$ $\frac{1-0}{1-r}$) = $\frac{a}{1-}$ $\frac{a}{1-r}$. (b) Let $a=3$ and $r=\frac{1}{4}$ $\frac{1}{4}$. Then $a_n = S_n - 2$. Then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - 2 = \frac{a}{1-r} - 2 = \frac{3}{1-\frac{1}{4}} - 2 = 2.$
- (c) Let $a = 7$ and $r = \frac{1}{10}$. Then $a_n = S_n 6$. Then $1.\dot{7} = \lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - 6 = \frac{a}{1-r} - 6 = \frac{7}{1-\frac{1}{10}} - 6 = \frac{16}{9}.$
- 4. A sequence $\{a_n\}$ is defined recursively by the following equations:

$$
\begin{cases} a_1 = 1, \\ a_{n+1} = \sqrt{7 + 2a_n} \quad \text{for } n \ge 1. \end{cases}
$$

Answer the following questions:

- (a) Show that $\{a_n\}$ is bounded and monotonic and hence convergent.
- (b) Find the limit of $\{a_n\}$.

Solutions:

- (a) (i) Let $P(n)$ be the statement that $a_{n+1} \ge a_n$.
	- When $n=1$, $a_2 =$ √ $7+2=3>1=a_1$

Hence, $P(1)$ is true.

• Suppose $P(m)$ is true, i.e.

$$
a_{m+1} \ge a_m
$$

• When $n = m + 1$,

$$
a_{m+2} = \sqrt{7 + 2a_{m+1}} \ge \sqrt{7 + 2a_m} = a_{m+1}
$$

Hence, $P(m+1)$ is true.

Therefore, $P(n)$ is true for any $n \geq 1$, i.e. $\{a_n\}$ is increasing. (ii) Let $Q(n)$ be the statement that $a_{n+1} \leq 1 + 2\sqrt{2}$.

• When $n = 1$,

$$
a_1 = 1 < 1 + 2\sqrt{2}
$$

Hence, $Q(1)$ is true.

• Suppose $Q(m)$ is true, i.e.

$$
a_m \le 1 + 2\sqrt{2}
$$

• When $n = m + 1$,

$$
a_{m+1} = \sqrt{7 + 2a_m} \le \sqrt{7 + 2 + 4\sqrt{2}} = \sqrt{1 + 2 \times 2\sqrt{2} + 8} = 1 + 2\sqrt{2}
$$

Hence, $Q(m+1)$ is true.

Therefore, $Q(n)$ is true for any $n \ge 1$, i.e. $a_n \le 1 + 2\sqrt{2}$. By Monotone Convergence Theorem, $\{a_n\}$ is convergent.

(b) Suppose $\lim_{n \to \infty} a_n = L$.

$$
a_{n+1} = \sqrt{7 + 2a_n}
$$

$$
\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{7 + 2a_n}
$$

$$
L = \sqrt{7 + 2L}
$$

$$
L^2 - 2L - 7 = 0
$$

$$
L = 1 + 2\sqrt{2} \quad \text{or} \quad L = 1 - 2\sqrt{2}
$$

 $L = 1 - 2$ √ $\overline{2}$ is rejected since $a_n > 0$ for all *n*. Hence, $\lim_{n \to \infty} a_n = 1 + 2\sqrt{2}$.

5. A sequence is defined by $x_1 = 1, x_{n+1} = \frac{2}{3}$ $rac{2}{3}x_n + \frac{9}{x_2^2}$ $\frac{9}{x_n^2}$ for $n \geq 1$.

(a) (i) Show that

$$
\frac{2}{3}x + \frac{9}{x^2} - 3 = \frac{(x-3)^2(2x+3)}{3x^2}.
$$

- (ii) Show that $x_n \geq 3$ for $n \geq 2$.
- (b) (i) Show that

$$
\frac{2}{3}x + \frac{9}{x^2} \le x
$$

for $x \geq 3$.

(ii) Prove that $x_{n+1} \leq x_n$ for $n \geq 2$.

(c) Hence show that $\{x_n\}$ converges and find $\lim_{n\to\infty}x_n$.

Solutions:

(a) (i)

$$
\frac{2}{3}x + \frac{9}{x^2} - 3 = \frac{2x^3 + 27 - 9x^2}{3x^2}
$$

$$
= \frac{(2x+3)(x^2 - 6x + 9)}{3x^2}
$$

$$
= \frac{(x-3)^2(2x+3)}{3x^2}
$$

(ii) Let $P(n)$ be the statement that $x_n \geq 3$.

• When $n = 2$,

$$
x_2 = \frac{2}{3} \times 1 + \frac{9}{1^2} = \frac{29}{3} > 3
$$

Hence, $P(2)$ is true.

• Suppose $P(m)$ is true, i.e.

$$
x_m \ge 3
$$

• When $n = m + 1$,

$$
x_{m+1} - 3 = \frac{2}{3}x_m + \frac{9}{x_m^2} - 3 = \frac{(x_m - 3)^2(2x_m + 3)}{3x_m^2} \ge 0
$$

$$
x_{m+1} \ge 3
$$

Hence, $P(m + 1)$ is true.

Therefore, $P(n)$ is true for any $n \ge 2$, i.e. $x_n \ge 3$.

(b) (i)

$$
\frac{2}{3}x + \frac{9}{x^2} - x = \frac{2x^3 + 27 - 3x^3}{3x^2}
$$

$$
= \frac{27 - x^3}{3x^2}
$$

$$
\leq 0
$$

for $x \geq 3$. Then $\frac{2}{3}x + \frac{9}{x^2} \leq x$ for $x \geq 3$. (ii) For $n \geq 2$, $x_n \geq 3$ by (a). Then

$$
x_{n+1} = \frac{2}{3}x_n + \frac{9}{x_n^2} \le x_n
$$

by (i).

(c) By Monotone Convergence Theorem, $\{x_n\}$ is convergent. Suppose $\lim_{n\to\infty} x_n = L$.

$$
x_{n+1} = \frac{2}{3}x_n + \frac{9}{x_n^2}
$$

$$
\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(\frac{2}{3}x_n + \frac{9}{x_n^2}\right)
$$

$$
L = \frac{2}{3}L + \frac{9}{L^2}
$$

$$
\frac{2}{3}L + \frac{9}{L^2} - L = 0
$$

$$
\frac{27 - L^3}{3L^2} = 0
$$

$$
L = 3
$$

Hence, $\lim_{n\to\infty} x_n = 3$.

- 6. For each of the given functions, f , find its natural domain, that is, the largest subset of $\mathbb R$ on which the expression defining f may be validly computed. Please express your answer in the form of a single interval, or a union of disjoint intervals. For example: $(-\infty, 2) \cup [5, 11)$.
	- (a) $f(x) = \frac{1}{2}$ 2 √ $4 - x^2$. (b) $f(x) = \sqrt{\frac{x-2}{x}}$ $x + 2$. (c) $f(x) = \ln(3x^2 - 4x + 5)$. (d) $f(x) = \ln(\sqrt{x-4} + \sqrt{6-x}).$ (e) $f(x) = \sin^2 x + \cos^4 x$. (f) $f(x) = \frac{1}{1+x^2}$ $1 + \cos x$. (g) $f(x) = 1 - |x|$.

Solutions:

(a)

$$
f(x) = \frac{1}{2}\sqrt{4 - x^2}
$$

It implies the condition $4 - x^2 \geq 0, -2 \leq x \leq 2$. Hence the largest domain is $[-2, 2]$

$$
f(x) = \sqrt{\frac{x-2}{x+2}}
$$

It implies two conditions $x \neq -2$ and $\frac{x-2}{x-2}$ $x + 2$ ≥ 0 . For $\frac{x-2}{1}$ $x + 2$ ≥ 0 , $x - 2$ $x + 2$ ≥ 0 $x - 2$ $x + 2$ $\cdot (x+2)^2 \geq 0$ $(x - 2)(x + 2) \ge 0$ $x \leq -2$ or $x \geq 2$

Hence the largest domain is $(-\infty, -2) \cup [2, \infty)$

(c)

$$
f(x) = \ln(3x^2 - 4x + 5)
$$

It implies the condition $3x^2 - 4x + 5 > 0$. Note that $\Delta = (-4)^2 - 4 \cdot 3 \cdot 5 = -44 < 0$, so the equation has no real roots. Then $3x^2 - 4x + 5 > 0$ for any x. Hence the largest domain is $(-\infty, \infty)$

(d)

$$
f(x) = \ln(\sqrt{x-4} + \sqrt{6-x})
$$

It implies three conditions $x - 4 \ge 0$, $6 - x \ge 0$, and $\sqrt{x-4} + \sqrt{6-x} > 0$. We get $4 \le x \le 6$ from the first two conditions.

We get $4 \le x \le 6$ from the first two conditions.
For the third condition, note that $\sqrt{x-4} \ge 0$ and $\sqrt{6-x} \ge 0$, and they cannot be 0 simultaneously, so any number satisfying $4 \leq x \leq 6$ works. Hence the largest domain is [4, 6]

$$
f(x) = \sin^2 x + \cos^4 x
$$

Note that $\sin x$ and $\cos x$ do not impose any conditions on domain. Hence the largest domain is $(-\infty, \infty)$

(f)

$$
f(x) = \frac{1}{1 + \cos x}
$$

It implies the condition $\cos x \neq -1$. Then $x \neq \pi + 2n\pi$, where *n* is any integer. To write the largest domain in disjoint interval, it involves infinitely many intervals of the form $((2n + 1)\pi,(2n + 3)\pi)$ We can write it as \bigcup n∈Z $((2n+1)\pi,(2n+3)\pi)$

(g)

$$
f(x) = 1 - |x|
$$

Note that $|x|$ do not impose any conditions on domain. Hence the largest domain is $(-\infty,\infty)$

7. Determine whether the given function, f , is injective, surjective, bijective, or none of these. Explain clearly.

- (a) $f : \mathbb{R} \to \mathbb{R}$, where $f(x) = 2x 1$. (b) $f: \{x \mid x \neq 1\} \to \mathbb{R}$, where $f(x) = \frac{x^2 - 1}{1}$
- (c) $f : \mathbb{R} \to \mathbb{R}$, where $f(x) = \sqrt[3]{x}$.
- (d) $f: [-1, 1] \to [0, 4)$, where $f(x) = x^2$.

Solutions:

(a) For any $x_1, x_2 \in \mathbb{R}$ with $x_1 \neq x_2$, we have $f(x_1) = 2x_1 - 1 \neq f(x_2) = 2x_2 - 1$. Then $f(x)$ is injective. For any real number $y \in \mathbb{R}$, there exists $x = \frac{y+1}{2}$ $\frac{+1}{2} \in \mathbb{R}$ such that $f(x) = y$. Then $f(x)$ is surjective. Thus, $f(x)$ is bijective since it is both injective and surjective.

 $x - 1$

.

- (b) $f(x) = x + 1$, for $x \in (-\infty, 1) \cup (1, +\infty)$. For any $x_1, x_2 \in (-\infty, 1) \cup (1, +\infty)$ with $x_1 \neq x_2$, we have $f(x_1) = x_1 + 1 \neq \emptyset$ $f(x_2) = x_2 + 1$. Then $f(x)$ is injective. For real number $y = 2$, there exists no $x \in (-\infty, 1) \cup (1, +\infty)$ such that $f(x) = y$. For otherwise, $x^2 - 1 = 2(x - 1) \implies (x - 1)^2 = 0 \implies x = 1$, which is a contradiction. So $f(x)$ is not surjective. Thus, $f(x)$ is not bijective.
- (c) For any $x_1, x_2 \in \mathbb{R}$ with $x_1 \neq x_2$, we have $f(x_1) = \sqrt[3]{x_1} \neq f(x_2) = \sqrt[3]{x_2}$. Then $f(x)$ is injective. For any real number $y \in \mathbb{R}$, there exists $x = y^3 \in \mathbb{R}$ such that $f(x) = y$. Then $f(x)$ is surjective. Thus, $f(x)$ is bijective since it is both injective and surjective.
- (d) For $x_1 = -x_2, x_1, x_2 \in [-1, 1]$, we have $f(x_1) = f(x_2)$. Then $f(x)$ is not injective. For $y < 0$, there exists no $x \in [-1,1]$ such that $f(x) = y$. Then, $f(x)$ is not surjective. Thus, $f(x)$ is not bijective.
- 8. Determine whether the given function, f , is increasing, strictly increasing, decreasing, strictly decreasing, bounded, bounded above, or bounded below.

(a)
$$
f : [0, +\infty) \to \mathbb{R}
$$
, where $f(x) = \frac{x}{x+1}$.
\n(b) $f : \mathbb{R}^+ \to \mathbb{R}$, where $f(x) = \frac{1}{x}$.

Solutions:

(a)

$$
f(x) = 1 - \frac{1}{x+1}
$$

For any x, y with $x < y$ and $x, y \in [0, +\infty)$, we have $f(x) < f(y)$. Then $f(x)$ is strictly increasing.

For $x \in [0, +\infty)$, $0 = f(0) \le f(x) \le \lim_{x \to +\infty} f(x) = 1$. Then $f(x)$ is bounded.

- (b) For any x, y with $x < y$ and $x, y \in (0, +\infty)$, we have $f(x) > f(y)$. Then $f(x)$ is strictly decreasing. Clearly, $f(x) = 1/x > 0$ for any $x \in \mathbb{R}^+$. So f is bounded below by 0. On the other hand, f is not bounded above. Otherwise, if $f(x) \leq M$ for any $x \in \mathbb{R}^+$, then, in particular, $M + 1 = f(1/(M + 1)) \leq M$, which is a contradiction.
- 9. Find whether the function is even, odd or neither:

(a)
$$
f(x) = x^2 - |x|
$$

\n(b) $f(x) = \log_2 (x + \sqrt{x^2 + 1})$
\n(c) $f(x) = x \left(\frac{a^x - 1}{a^x + 1} \right)$
\n(d) $f(x) = \sin x + \cos x$

Solutions:

(a)

$$
f(-x) = x^2 - |x| = f(x)
$$

Thus, $f(x)$ is even.

(b)

$$
f(-x) = \log_2(-x + \sqrt{x^2 + 1})
$$

= $\log_2\left((-x + \sqrt{x^2 + 1}) \cdot \frac{x + \sqrt{x^2 + 1}}{x + \sqrt{x^2 + 1}}\right)$
= $\log_2\left(\frac{1}{x + \sqrt{x^2 + 1}}\right)$
= $-f(x)$

Thus, $f(x)$ is odd.

(c)

$$
f(-x) = -x\left(\frac{a^{-x} - 1}{a^{-x} + 1}\right)
$$

$$
= x\left(\frac{a^{x} - 1}{a^{x} + 1}\right)
$$

$$
= f(x)
$$

Thus, $f(x)$ is even.

(d)

$$
f(-x) = \sin(-x) + \cos(-x)
$$

$$
= -\sin x + \cos x
$$

 $f(x)$ is neither even nor odd since $f(-x) \neq f(x)$ and $f(-x) \neq -f(x)$.

10. Evaluate the limit, if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

(a)
$$
\lim_{x \to 3} \frac{x^3 - 3x^2 + 5x - 15}{x^2 - x - 12}.
$$

\n(b)
$$
\lim_{x \to 1/2} \frac{1 - 32x^5}{1 - 8x^3}.
$$

\n(c)
$$
\lim_{x \to 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}}.
$$

\n(d)
$$
\lim_{x \to 1} \frac{\sqrt{x^2 + 8} - \sqrt{10 - x^2}}{\sqrt{x^2 + 3} - \sqrt{5 - x^2}}.
$$

\n(e)
$$
\lim_{x \to 1} \left(\frac{2}{1 - x^2} + \frac{1}{x - 1} \right).
$$

\n(f)
$$
\lim_{x \to a} \left(\frac{2a}{x^2 - a^2} - \frac{1}{x - a} \right).
$$

\n(g)
$$
\lim_{x \to a} \left(\frac{x^m - a^m}{x^n - a^n} \right).
$$

\n(h)
$$
\lim_{x \to 1} \left(\frac{x - 1}{x^{1/4} - 1} \right).
$$

\n(i)
$$
\lim_{x \to 0} \left(\frac{\sqrt{x + 1} - 1}{\ln(1 + x)} \right).
$$

\n(j)
$$
\lim_{x \to 0} \left(\frac{x^{7/10} + 3x^{4/3} + 2x}{x^{1/3} + 4x^{2/3} + 2x^{1/5}} \right).
$$

Solutions:

(a)

$$
\lim_{x \to 3} \frac{x^3 - 3x^2 + 5x - 15}{x^2 - x - 12}
$$

=
$$
\frac{3^3 - 3(3^2) + 5(3) - 15}{3^2 - 3 - 12}
$$

= 0

.

$$
\lim_{x \to 1/2} \frac{1 - 32x^5}{1 - 8x^3}
$$
\n
$$
= \lim_{x \to 1/2} \frac{(1 - 2x)(1 + 2x + 4x^2 + 8x^3 + 16x^4)}{(1 - 2x)(1 + 2x + 4x^2)}
$$
\n
$$
= \lim_{x \to 1/2} \frac{1 + 2x + 4x^2 + 8x^3 + 16x^4}{1 + 2x + 4x^2}
$$
\n
$$
= \frac{1 + 2(\frac{1}{2}) + 4(\frac{1}{2})^2 + 8(\frac{1}{2})^3 + 16(\frac{1}{2})^4}{1 + 2(\frac{1}{2}) + 4(\frac{1}{2})^2}
$$
\n
$$
= \frac{5}{3}
$$

(c)

$$
\lim_{x \to 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}}
$$
\n
$$
= \lim_{x \to 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}} \cdot \frac{x + \sqrt{2 - x^2}}{2x + \sqrt{2 + 2x^2}} \cdot \frac{2x + \sqrt{2 + 2x^2}}{x + \sqrt{2 - x^2}}
$$
\n
$$
= \lim_{x \to 1} \frac{x^2 - (2 - x^2)}{4x^2 - (2 + 2x^2)} \cdot \frac{2x + \sqrt{2 + 2x^2}}{x + \sqrt{2 - x^2}}
$$
\n
$$
= \lim_{x \to 1} \frac{2x + \sqrt{2 + 2x^2}}{x + \sqrt{2 - x^2}}
$$
\n
$$
= \frac{2(1) + \sqrt{2 + 2(1)^2}}{1 + \sqrt{2 - 1^2}}
$$
\n
$$
= 2
$$

(d)

$$
\lim_{x \to 1} \frac{\sqrt{x^2 + 8} - \sqrt{10 - x^2}}{\sqrt{x^2 + 3} - \sqrt{5 - x^2}}
$$
\n
$$
= \lim_{x \to 1} \frac{\sqrt{x^2 + 8} - \sqrt{10 - x^2}}{\sqrt{x^2 + 3} - \sqrt{5 - x^2}} \cdot \frac{\sqrt{x^2 + 8} + \sqrt{10 - x^2}}{\sqrt{x^2 + 3} + \sqrt{5 - x^2}} \cdot \frac{\sqrt{x^2 + 3} + \sqrt{5 - x^2}}{\sqrt{x^2 + 8} + \sqrt{10 - x^2}}
$$
\n
$$
= \lim_{x \to 1} \frac{x^2 + 8 - (10 - x^2)}{x^2 + 3 - (5 - x^2)} \cdot \frac{\sqrt{x^2 + 3} + \sqrt{5 - x^2}}{\sqrt{x^2 + 8} + \sqrt{10 - x^2}}
$$
\n
$$
= \lim_{x \to 1} \frac{\sqrt{x^2 + 3} + \sqrt{5 - x^2}}{\sqrt{x^2 + 8} + \sqrt{10 - x^2}}
$$
\n
$$
= \frac{\sqrt{1^2 + 3} + \sqrt{5 - 1^2}}{\sqrt{1^2 + 8} + \sqrt{10 - 1^2}}
$$
\n
$$
= \frac{2}{3}
$$

(b)

(e)

$$
\lim_{x \to 1} \frac{2}{1 - x^2} + \frac{1}{x - 1}
$$
\n
$$
= \lim_{x \to 1} \frac{2 - (1 + x)}{(1 - x)(1 + x)}
$$
\n
$$
= \lim_{x \to 1} \frac{1}{1 + x}
$$
\n
$$
= \frac{1}{1 + 1}
$$
\n
$$
= \frac{1}{2}
$$

(f)

$$
\lim_{x \to a} \frac{2a}{x^2 - a^2} - \frac{1}{x - a}
$$
\n
$$
= \lim_{x \to a} \frac{2a - (x + a)}{(x - a)(x + a)}
$$
\n
$$
= \lim_{x \to a} \frac{-1}{x + a}
$$

(Case 1) If $a \neq 0,$

$$
\lim_{x \to a} \frac{-1}{x + a}
$$

$$
= \frac{-1}{a + a}
$$

$$
= -\frac{1}{2a}
$$

(Case 2) If $a = 0$, the limit does not exist since

$$
\lim_{x \to a^{-}} \frac{-1}{x + a} = \lim_{x \to 0^{-}} \frac{-1}{x} = +\infty
$$

while

$$
\lim_{x \to a^{+}} \frac{-1}{x + a} = \lim_{x \to 0^{+}} \frac{-1}{x} = -\infty
$$

(g)

$$
\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n}
$$

(Case 1) Suppose $a\neq 0.$

$$
\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n}
$$

=
$$
\lim_{x \to a} \frac{mx^{m-1}}{nx^{n-1}}
$$
 (l'Hôpital's rule)
=
$$
\frac{m}{n}a^{m-n}
$$

Alternative answer without using l'Hôpital's rule:

If $m = 0$, then

$$
\frac{x^m - a^m}{x - a} = \frac{1 - 1}{x - a} = 0.
$$

If $m > 0$, then

$$
\lim_{x \to a} \frac{x^m - a^m}{x - a} = \lim_{x \to a} \sum_{k=0}^{m-1} x^k a^{m-1-k} = \sum_{k=0}^{m-1} a^{m-1} = m a^{m-1}.
$$

If $m < 0$, then by the above limit,

$$
\lim_{x \to a} \frac{x^m - a^m}{x - a} = \lim_{x \to a} -x^m a^m \cdot \frac{x^{-m} - a^{-m}}{x - a} = -a^{2m}(-m)a^{-m-1} = ma^{m-1}.
$$

Hence, if $n \neq 0$, we have

$$
\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n} = \lim_{x \to a} \frac{x^m - a^m}{x - a} \cdot \frac{x - a}{x^n - a^n} = \frac{m}{n} a^{m-n}.
$$

(Case 2) If $a = 0$ and $m = n$,

$$
\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n} = 1
$$

(Case 3) If $a = 0$ and $m > n$,

$$
\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n} = \lim_{x \to 0} x^{m-n} = 0
$$

(Case 4) If $a = 0$ and $m < n$, the limit does not exist since

$$
\lim_{x \to a^{+}} \frac{x^{m} - a^{m}}{x^{n} - a^{n}} = \lim_{x \to 0^{+}} \frac{1}{x^{n-m}} = +\infty,
$$

while

$$
\lim_{x \to a^{-}} \frac{x^{m} - a^{m}}{x^{n} - a^{n}} = \lim_{x \to 0^{-}} \frac{1}{x^{n-m}} = -\infty.
$$

(h)

$$
\lim_{x \to 1} \frac{x-1}{x^{1/4} - 1}
$$
\n
$$
= \lim_{x \to 1} \frac{(x^{1/4} - 1)(x^{1/4} + 1)(x^{1/2} + 1)}{x^{1/4} - 1}
$$
\n
$$
= \lim_{x \to 1} (x^{1/4} + 1)(x^{1/2} + 1)
$$
\n
$$
= (1 + 1)(1 + 1)
$$
\n
$$
= 4
$$

$$
\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{\ln(x+1)} \n= \lim_{x \to 0} \frac{(2\sqrt{x+1})^{-1}}{(x+1)^{-1}} \quad \text{(l'Hôpital's rule)} \n= \frac{\sqrt{0+1}}{2} \n= \frac{1}{2}
$$

See $11(h)$ for an answer without using l'Hôpital's rule. (j)

$$
\lim_{x \to 0} \frac{x^{7/10} + 3x^{4/3} + 2x}{x^{1/3} + 4x^{2/3} + 2x^{1/5}}
$$
\n
$$
= \lim_{x \to 0} \frac{x^{1/2} + 3x^{17/15} + 2x^{4/5}}{x^{2/15} + 4x^{7/15} + 2}
$$
\n
$$
= \frac{0 + 0 + 0}{0 + 0 + 2}
$$
\n
$$
= 0
$$

11. Without using l'Hôpital's rule, evaluate the limit, if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

.

(a)
$$
\lim_{x \to \infty} \frac{\sqrt{x^4 + 1} - \sqrt{x^4 - 1}}{x}
$$
.
\n(b) $\lim_{x \to \infty} \frac{\sqrt{3x^2 - 1} - \sqrt{2x^2 + 1}}{4x + 3}$.
\n(c) $\lim_{x \to \pi/2} \left(\frac{1 - \sin^3 x}{1 - \sin^2 x} \right)$.
\n(d) $\lim_{x \to \pi/4} \left(\frac{\sin 2x - (1 + \cos 2x)}{\cos x - \sin x} \right)$
\n(e) $\lim_{x \to \pi/4} \frac{\sqrt{2} - \cos x - \sin x}{(4x - \pi)^2}$.
\n(f) $\lim_{x \to 0} \frac{\sin 7x - \sin x}{\sin 6x}$.
\n(g) $\lim_{x \to 0} \left(\frac{1 + x}{1 - x} \right)^{1/x}$.
\n(h) $\lim_{x \to 0} \left(\frac{\sqrt{x + 1} - 1}{\ln (1 + x)} \right)$.

(i)

(i)
$$
\lim_{x \to 0} \left(\frac{e^{ax} - e^a}{x} \right)
$$
 where *a* is a constant.

Solutions:

(a)

$$
\lim_{x \to \infty} \frac{\sqrt{x^4 + 1} - \sqrt{x^4 - 1}}{x} = \lim_{x \to \infty} \frac{(\sqrt{x^4 + 1} - \sqrt{x^4 - 1})(\sqrt{x^4 + 1} + \sqrt{x^4 - 1})}{x(\sqrt{x^4 + 1} + \sqrt{x^4 - 1})}
$$

$$
= \lim_{x \to \infty} \frac{2}{x(\sqrt{x^4 + 1} + \sqrt{x^4 - 1})}
$$

$$
= 0
$$

(b)

$$
\lim_{x \to \infty} \frac{\sqrt{3x^2 - 1} - \sqrt{2x^2 + 1}}{4x + 3} = \lim_{x \to \infty} \frac{\sqrt{3 - \frac{1}{x^2}} - \sqrt{2 + \frac{1}{x^2}}}{4 + \frac{3}{x}}
$$

$$
= \frac{\sqrt{3} - \sqrt{2}}{4}
$$

(c)

$$
x^{3} - 1 = (x - 1)(x^{2} + x + 1)
$$

\n
$$
\lim_{x \to \pi/2} \left(\frac{1 - \sin^{3} x}{1 - \sin^{2} x} \right) = \lim_{x \to \pi/2} \frac{(1 - \sin x)(1 + \sin x + \sin x)}{(1 - \sin x)(1 + \sin x)}
$$

\n
$$
= \lim_{x \to \pi/2} \frac{(1 + \sin x + \sin x)}{(1 + \sin x)}
$$

\n
$$
= \lim_{x \to \pi/2} \frac{1 + 2\sin x}{1 + \sin x}
$$

\n
$$
= \frac{3}{2}
$$

(d)

$$
1 + 2\cos 2x = 1 + \cos^2 x - \sin^2 x
$$

\n
$$
\sin 2x = 2\sin x \cos x
$$

\n
$$
\lim_{x \to \pi/4} \left(\frac{\sin 2x - (1 + \cos 2x)}{\cos x - \sin x} \right) = \lim_{x \to \pi/4} \frac{2\cos x(\sin x - \cos x)}{\cos x - \sin x}
$$

\n
$$
= \lim_{x \to \pi/4} -2\cos x
$$

\n
$$
= -\sqrt{2}
$$

(e)

$$
a\cos x + b\sin x = \sqrt{a^2 + b^2}\sin(x + \tan^{-1}\frac{a}{b}),
$$

for $b \neq 0$ and $-\frac{\pi}{2} < \tan^{-1} \frac{a}{b} < \frac{\pi}{2}$ $\frac{\pi}{2}$.

$$
1 - \cos x = 2\sin^2(\frac{x}{2})
$$

Thus, we have

$$
\cos x + \sin x = \sqrt{2}\sin(x + \frac{\pi}{4})
$$

$$
= \sqrt{2}\cos(x - \frac{\pi}{4})
$$

$$
\lim_{x \to \pi/4} \frac{\sqrt{2} - \cos x - \sin x}{(4x - \pi)^2} = \lim_{x \to \pi/4} \frac{\sqrt{2} - \sqrt{2}\cos(x - \frac{\pi}{4})}{(4x - \pi)^2}
$$

$$
= \lim_{x \to \pi/4} \frac{\sqrt{2}}{16} \times \frac{1 - \cos(x - \frac{\pi}{4})}{(x - \frac{\pi}{4})^2}
$$

$$
= \frac{\sqrt{2}}{16} \lim_{x \to \pi/4} \frac{2\sin^2(\frac{x}{2} - \frac{\pi}{8})}{4(\frac{x}{2} - \frac{\pi}{8})^2}
$$

$$
= \frac{\sqrt{2}}{32} \lim_{x \to \pi/4} \frac{\sin^2(\frac{x}{2} - \frac{\pi}{8})}{(\frac{x}{2} - \frac{\pi}{8})^2}
$$

$$
= \frac{\sqrt{2}}{32} \lim_{x \to \pi/4} (\frac{\sin(\frac{x}{2} - \frac{\pi}{8})}{\frac{x}{2} - \frac{\pi}{8}})^2
$$

$$
= \frac{\sqrt{2}}{32}
$$

(f)

$$
\lim_{x \to 0} \frac{\sin 7x - \sin x}{\sin 6x} = \lim_{x \to 0} \frac{\sin 6x \cos x + \cos 6x \sin x - \sin x}{\sin 6x}
$$

=
$$
\lim_{x \to 0} (\cos x + \frac{\sin x (\cos 6x - 1)}{\sin 6x})
$$

=
$$
\lim_{x \to 0} \cos x + \lim_{x \to 0} \frac{\sin x (-2 \sin^2 3x)}{2 \sin 3x \cos 3x}
$$

=
$$
\lim_{x \to 0} \cos x - \lim_{x \to 0} \sin x \tan 3x
$$

=
$$
1 + 0 = 1
$$

(g)

$$
\lim_{x \to 0} \left(\frac{1+x}{1-x} \right)^{1/x} = \lim_{x \to 0} (1+x)^{1/x} (1-x)^{1/(-x)}
$$

= $e \cdot e$
= e^2 .

$$
(\mathrm{h})
$$

$$
\lim_{x \to 0} \left(\frac{\sqrt{x+1} - 1}{\ln(1+x)} \right) = \lim_{x \to 0} \frac{x}{\ln(x+1)} \cdot \frac{\sqrt{x+1} - 1}{x}
$$
\n
$$
= \lim_{x \to 0} \frac{x}{\ln(x+1)} \cdot \frac{(\sqrt{x+1} - 1)(\sqrt{x+1} + 1)}{x(\sqrt{x+1} + 1)}
$$
\n
$$
= \lim_{x \to 0} \frac{x}{\ln(x+1)} \cdot \frac{1}{\sqrt{x+1} + 1}
$$
\n
$$
= \lim_{x \to 0} \frac{x}{\ln(x+1)} \cdot \frac{1}{(\sqrt{x+1} + 1)}
$$
\n
$$
= \frac{1}{2}
$$

(i) First assume $a \neq 0$.

$$
\lim_{x \to 0} \left(\frac{e^{ax} - e^a}{x} \right) = a \lim_{x \to 0} \frac{e^{ax} - 1 + 1 - e^a}{ax}
$$

$$
= a \left(\lim_{x \to 0} \left(\frac{e^{ax} - 1}{ax} + \frac{1 - e^a}{ax} \right) \right)
$$

Now $\lim_{x\to 0}$ $e^{ax}-1$ ax $= 1$ while

$$
\lim_{x \to 0^+} \frac{1 - e^a}{x} = \begin{cases} +\infty & \text{if } a < 0 \\ -\infty & \text{if } a > 0 \end{cases} \quad \text{and} \quad \lim_{x \to 0^-} \frac{1 - e^a}{x} = \begin{cases} -\infty & \text{if } a < 0 \\ +\infty & \text{if } a > 0 \end{cases}
$$

Thus

$$
\lim_{x \to 0^+} \left(\frac{e^{ax} - e^a}{x} \right) = \begin{cases} +\infty & \text{if } a < 0 \\ 0 & \text{if } a = 0 \\ -\infty & \text{if } a > 0 \end{cases} \quad \text{and} \quad \lim_{x \to 0^-} \left(\frac{e^{ax} - e^a}{x} \right) = \begin{cases} -\infty & \text{if } a < 0 \\ 0 & \text{if } a = 0 \\ +\infty & \text{if } a > 0 \end{cases}
$$

- 12. Evaluate the following limits.
	- (a) $\lim_{x \to 0^{-}} x |\sin \frac{1}{x}|$ (b) $\lim_{x \to +\infty} \frac{\sin \tan x + \tan \sin x}{x+1}$ $x+1$

Solutions:

(a)

$$
\lim_{x \to 0^-} x \left| \sin \frac{1}{x} \right|
$$

Note that $0 \leq$ sin 1 \overline{x} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ ≤ 1 Then $-x \leq x$ $\begin{array}{c} \hline \end{array}$ sin 1 \overline{x} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\leq x$

Since
$$
\lim_{x \to 0} -x = 0
$$
 and $\lim_{x \to 0} x = 0$,
by sandwich theorem, $\lim_{x \to 0} x \left| \sin \frac{1}{x} \right| = 0$
Then $\lim_{x \to 0^-} x \left| \sin \frac{1}{x} \right| = 0$

(b)

$$
\lim_{x \to +\infty} \frac{\sin \tan x + \tan \sin x}{x + 1}
$$

Note that
$$
-1 \le \sin x \le 1
$$

\nThen $-\tan 1 \le \tan \sin x \le \tan 1$
\n $-\frac{1 + \tan 1}{x + 1} \le \frac{\sin \tan x + \tan \sin x}{\frac{x + 1}{x + 1}} \le \frac{1 + \tan 1}{x + 1}$ for $x > 0$
\nSince $\lim_{x \to +\infty} -\frac{1 + \tan 1}{x + 1} = 0$ and $\lim_{x \to +\infty} \frac{1 + \tan 1}{x + 1} = 0$,
\nby sandwich theorem, $\lim_{x \to +\infty} \frac{\sin \tan x + \tan \sin x}{x + 1} = 0$

13. Evaluate the following limits.

(a)
$$
\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x}
$$

\n(b)
$$
\lim_{x \to 0} \frac{\tan^2 x}{\sin(x^2)}
$$

\n(c)
$$
\lim_{x \to 0} \frac{\sin^2 x}{1 - \sqrt{\cos x}}
$$

Solutions:

(a)

$$
\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x}
$$
\n
$$
= \lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x \cos x}
$$
\n
$$
= \lim_{x \to 0} \frac{1 - \cos x}{(1 - \cos x)(1 + \cos x) \cos x}
$$
\n
$$
= \lim_{x \to 0} \frac{1}{(1 + \cos x) \cos x}
$$
\n
$$
= \frac{1}{(1 + 1)(1)}
$$
\n
$$
= \frac{1}{2}
$$

$$
\lim_{x \to 0} \frac{\tan^2 x}{\sin(x^2)}
$$
\n
$$
= \lim_{x \to 0} \frac{\frac{x^2}{\sin(x^2)}}{\frac{\sin x}{x^2}}
$$
\n
$$
= \lim_{x \to 0} \frac{\frac{x}{\sin x} \cdot \frac{1}{\cos^2 x}}{\frac{\sin x}{x^2}}
$$
\n
$$
= \frac{(1)(1) \left(\frac{1}{1}\right)}{1}
$$
\n
$$
= 1
$$

(c)

$$
\lim_{x \to 0} \frac{\sin^2 x}{1 - \sqrt{\cos x}} \n= \lim_{x \to 0} \frac{\sin^2 x}{1 - \sqrt{\cos x}} \cdot \frac{1 + \sqrt{\cos x}}{1 + \sqrt{\cos x}} \cdot \frac{1 + \cos x}{1 + \cos x} \n= \lim_{x \to 0} \frac{\sin^2 x}{1 - \cos^2 x} (1 + \sqrt{\cos x})(1 + \cos x) \n= \lim_{x \to 0} (1 + \sqrt{\cos x})(1 + \cos x) \n= (1 + 1)(1 + 1) \n= 4
$$