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Theme: Harmonic Analysis and Applications

Description: We will focus on some particular aspects of harmonic analysis, that has ap-

plications to incidence geometry and number theory. The unity across different fields of

mathematics will be emphasized, as material will often be drawn from more than one area

of mathematics. Students are expected to supplement the text by materials they gather or

develop on their own.

Some sample problems to be considered are as follows:

1. How many integer points are there in a ball of radius R in Rn? For geometers, this is

the number of eigenvalues of the standard Laplacian on the n-dimensional flat torus that

are smaller than R, and for number theorists, this is basically
∑

0≤m≤R rn(m) if rn(m) is

the number of ways to write the integer m as the sum of n squares. In understanding

this problem, we will come across some simple and yet beautiful applications of Fourier

analysis. A key element involved is the decay of the Fourier transform of the surface

measure on the sphere. This extends to the situation, when one replaces the sphere by a

hypersurface with non-vanishing Gaussian curvature.

2. How small can a subset of Rn be, if it contains a unit line segment in every possible

direction? This is a famous open problem, commonly attributed to Kakeya. We will look

various formulations of this problem, and seek to understand an analogue over finite fields.

The latter is a recent result of Zeev Dvir, and has since been developed into a powerful

tool in harmonic analysis (called the polynomial method).

3. For j = 1, 2, . . . , n, let πj be the j-th coordinate projection on Rn. For a measurable

set E in Rn, can one bound the measure of E, by the measures of πj(E), 1 ≤ j ≤ n?

This can be answered by a variant of the isoperimetric inequality in geometry, called the

Loomis-Whitney inequality. The Loomis-Whitney inequality is in turn a special case of

a multilinear variant of a Kakeya inequality. A non-sharp version of the latter can be

proved by an induction-on-scales argument.
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4. Let f be an Lp function on Rn. If p = 1, the Fourier transform f̂ of f is known to be

continuous, while if p = 2, the best one can say about f̂ is just that it is another L2

function. Hence if S is a hypersurface in Rn, it makes sense to talk about the restriction

of f̂ to S if f ∈ L1, but not so if f ∈ L2. A surprising observation, due to Elias M. Stein,

is that the restriction of f̂ to S is still well-defined, if f ∈ Lp for some p sufficiently close

to 1, and if S has non-vanishing Gaussian curvature. The full range of exponents p for

which this holds is still unknown, but there is a conjectured range, and this is called the

restriction conjecture. The restriction conjecture implies the Kakeya conjecture. To date,

the restriction conjecture is best understood via a multilinear restriction inequality, which

turns out to be equivalent to a multilinear Kakeya inequality. This circle of ideas has since

found applications in the study of `2 decoupling inequalities, which has far-reaching and

spectacular consequences in number theory and beyond. We may seek to understand

some of these very recent developments.
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