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We defined earlier the sine and cosine by the following series:

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · =

∞∑
k=0

(−1)kx2k

(2k)!

(We assumed that the series converges for all x ∈ R, and can be differentiated term by term.)
In particular, we believed that

d

dx
sinx = cosx, and

d

dx
cosx = − sinx.

Also, we knew sin 0 = 0, cos 0 = 1, and sin(−x) = − sinx, cos(−x) = cosx for all x ∈ R.
Below we deduce all familiar properties of the sine and cosine from this definition.
The key is the following corollary of the mean value theorem:

Corollary 1. Suppose f : R→ R is differentiable on R. If

f ′(x) = 0

for all x ∈ R, then f is constant on R; in particular, f(x) = f(0) for all x ∈ R.

Hence we have:

Proposition 2.

(1) sin2 x+ cos2 x = 1 for all x ∈ R.

Proof. Let

f(x) = sin2 x+ cos2 x.

Then

f(0) = sin2 0 + cos2 0 = 1.

Also, f is differentiable on R, and

f ′(x) = 2 sinx cosx+ 2 cosx(− sinx) = 0

for all x ∈ R. Hence Corollary 1 implies that f(x) = f(0) = 1 for all x ∈ R, which is the desired
conclusion. �

Next we will prove the compound angle formula:

Proposition 3. For all x, y ∈ R, we have

sin(x+ y) = sinx cos y + cosx sin y(2)

sin(x− y) = sinx cos y − cosx sin y(3)

cos(x+ y) = cosx cos y − sinx sin y(4)

cos(x− y) = cosx cos y + sinx sin y.(5)

In fact, it is easy to see that (3) follows from (2) by replacing y by −y (and using that
sin(−y) = − sin y, cos(−y) = cos y). Similarly, (5) follows from (4) by replacing y by −y. Hence
it suffices to prove (2) and (4).

To do so, one way is to proceed via the following result about differential equation:
1
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Lemma 4. Suppose f : R→ R is a twice differentiable function, with

f ′′(x) + f(x) = 0 for all x ∈ R,
and

f(0) = f ′(0) = 0.

Then f(x) = 0 for all x ∈ R.

It says the zero function is the only function that satisfies the conditions of the Lemma.

Proof of Lemma 4. We introduce two auxiliary functions F : R→ R, G : R→ R, such that

F (x) = f(x) cosx− f ′(x) sinx, G(x) = f(x) sinx+ f ′(x) cosx

for all x ∈ R. Then F and G are both differentiable, and

F ′(x) = −f(x) sinx+ f ′(x)(cosx− cosx)− f ′′(x) sinx = 0

G′(x) = f(x) cosx+ f ′(x)(sinx− sinx) + f ′′(x) cosx = 0

for all x ∈ R (the last equalities uses the assumption f ′′ + f = 0). Hence both F and G are
constants. Also, by our assumptions on f and f ′, we have

F (0) = f(0) cos 0− f ′(0) sin 0 = f(0) = 0

and
G(0) = f(0) sin 0 + f ′(0) cos 0 = f ′(0) = 0.

Hence
F (x) = 0 = G(x) for all x ∈ R,

i.e. {
f(x) cosx− f ′(x) sinx = 0

f(x) sinx+ f ′(x) cosx = 0
for all x ∈ R.

We now solve for f(x) by eliminating f ′(x): we multiply the first equation by cosx, and the
second equation by sinx, and take the sum of the resulting equations. Then

(cos2 x+ sin2 x)f(x) = 0

for all x ∈ R, which by (1) implies f(x) = 0 for all x ∈ R, as desired. �

We can now prove (2) and (4).

Proof of (2). Fix y ∈ R. Let f(x) = sin(x+ y)− sinx cos y − cosx sin y. We want to show that
f(x) = 0 for all x ∈ R. To do so, we appeal to our lemma. First,

f ′′(x) = − sin(x+ y) + sinx cos y + cosx sin y = −f(x)

for all x ∈ R, i.e. f ′′(x) + f(x) = 0 for all x ∈ R. Next,

f(0) = sin(0 + y)− sin 0 cos y − cos 0 sin y = 0.

Also,
f ′(x) = cos(x+ y)− cosx cos y + sinx sin y

for all x ∈ R. Hence

f ′(0) = cos(0 + y)− cos 0 cos y + sin 0 sin y = 0.

By the lemma, it follows that f(x) = 0 for all x ∈ R, as desired. �

The proof of (4) is similar, and left as an exercise.
From Proposition 3 we have the usual double angle formula:

Proposition 5. For all x ∈ R, we have

sin(2x) = 2 sinx cosx(6)

cos(2x) = cos2 x− sin2 x(7)

cos(2x) = 2 cos2 x− 1(8)

cos(2x) = 1− 2 sin2 x(9)
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Proof. (6) and (7) just follows from (2) and (4) by setting y = x. (8) and (9) follow from (7)
and an application of (1). �

Hence we have the half-angle formula:

Proposition 6. For all x ∈ R, we have

cos2 x =
1

2
(1 + cos 2x)(10)

sin2 x =
1

2
(1− cos 2x)(11)

Proof. Just rearrange (8) and (9). �

Sometimes the following triple-angle formula are also useful:

Proposition 7. For all x ∈ R, we have

sin(3x) = 3 sinx− 4 sin3 x(12)

cos(3x) = 4 cos3 x− 3 cosx(13)

Proof. For all x ∈ R, we have (by the compound and double angle formula)

sin(3x) = sin(x+ 2x)

= sinx cos 2x+ cosx sin 2x

= sinx(1− 2 sin2 x) + 2 sinx cos2 x

= sinx(1− 2 sin2 x) + 2 sinx(1− sin2 x)

= 3 sinx− 4 sin3 x,

and

cos(3x) = cos(x+ 2x)

= cosx cos 2x− sinx sin 2x

= cosx(2 cos2 x− 1)− 2 sin2 x cosx

= cosx(2 cos2 x− 1)− 2(1− cos2 x) cosx

= 4 cos3 x− 3 cosx.

�

Also from Proposition 3, we have the following product-to-sum formula (allowing one to
convert the product of two trigonometric functions into a sum):

Proposition 8. For all x, y ∈ R, we have

sinx cos y =
1

2
(sin(x+ y) + sin(x− y))(14)

cosx cos y =
1

2
(cos(x+ y) + cos(x− y))(15)

sinx sin y =
1

2
(cos(x− y)− cos(x+ y))(16)

Proof. (14) follows by averaging (2) and (3). (15) follows by averaging (4) and (5). (16) follows
by subtracting (4) from (5), and dividing by 2. �

Next, we look at why sine and cosine are periodic. We know cos 0 = 1, and we claim cos 2 < 0:
in fact cos 2 is defined by an alternating series, and thus

cos 2 = 1− 22

2!
+

24

4!
− . . .

≤ 1− 22

2!
+

24

4!
< 0.

Since cosx is continuous on R, there exists a smallest positive number a such that cos a = 0.
(Such a is unique.) We now make the following definition:
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Definition 1. We define the real number π so that

π := 2a,

where a is as above.

Note that if we adopt this definition, then we will have to prove that the circumference of a
circle of radius r is 2πr; that we will do when we learn about integration, which allows one to
make sense of the length of a curve.

Adopting the above definition of π, we show the following:

Proposition 9.

(17) cosx > 0 for all x ∈ [0,
π

2
),

and

(18) sinx > 0 for all x ∈ (0,
π

2
].

Also,

(19) cos
π

2
= 0,

and

(20) sin
π

2
= 1

Proof. (19) follows immediately from our definition of π.
Now note that π

2 is the first positive zero of cos, and that cos 0 = 1 > 0. Hence by continuity

of cos, we conclude that (17) holds. In particular, d
dx sinx = cosx > 0 for x ∈ [0, π2 ). Hence sin

is strictly increasing on [0, π2 ]. Since sin 0 = 0, it follows that (18) holds; in particular, sin π
2 > 0.

We can now determine the value of sin π
2 . In fact, from (1), we get

sin2 π

2
+ cos2

π

2
= 1,

so from (19), we get sin π
2 = ±1. But we already knew that sin π

2 > 0, so sin π
2 must be 1 (and

not −1). This proves (20). �

We can now prove the periodicity of sine and cosine:

Proposition 10. For all x ∈ R, we have

sin(x+
π

2
) = cosx(21)

cos(x+
π

2
) = − sinx(22)

sin(x+ π) = − sinx(23)

cos(x+ π) = − cosx(24)

sin(x+ 2π) = sinx(25)

cos(x+ 2π) = cosx(26)

Proof. To prove (21), let f(x) = sin(x + π
2 ) − cosx. We want to invoke Lemma 4. To do so,

let’s check that

f ′′(x) + f(x) = [− sin(x+
π

2
) + cosx] + [sin(x+

π

2
)− cosx] = 0

for all x ∈ R. Also,

f(0) = sin
π

2
− cos 0 = 1− 1 = 0,

f ′(0) = cos
π

2
+ sin 0 = 0 + 0 = 0.

So one can apply Lemma 4, and conclude that f(x) = 0 for all x ∈ R. This proves (21).
The proof of (22) is similar, and left to the reader.
Finally, (23) follows by first applying (21), and then (22):

sin(x+ π) = cos(x+
π

2
) = − sinx,
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Similarly one can prove (24). Also, (25) follows from applying (23) twice:

sin(x+ 2π) = − sin(x+ π) = sinx.

Similarly one can prove (26). �

We can now sketch the graph of sin and cos. First, from the periodicity established in the
earlier proposition, it suffices to sketch sin and cos on [0, π2 ]. But then this is easy: for instance,
to sketch sin, knowing that

sin 0 = 0, sin
π

2
= 1, sinx is continuous for x ∈ [0,

π

2
],

d

dx
sinx = cosx > 0 for x ∈ (0,

π

2
),

d2

dx2
sinx = − sinx < 0 for x ∈ (0,

π

2
),

allows us to sketch fairly well the graph of sin on [0, π2 ]; it is strictly increasing and concave
there. Similarly one can sketch the graph of cos on [0, π2 ], hence on the whole R by periodicity.

Another useful formula is

Proposition 11. For any x ∈ R,

sin(
π

2
− x) = cosx(27)

cos(
π

2
− x) = sinx(28)

Proof. To prove (27), just use (21) with x replaced by −x, and use that cos is even:

sin(
π

2
− x) = cos(−x) = cosx.

Similarly one can prove (28). �

If one wants to calculate the values of sin and cos at some special angles, we can also do so:

Proposition 12.

sinπ = 0(29)

cosπ = −1(30)

sin
3π

2
= −1(31)

cos
3π

2
= 0(32)

sin 2π = 0(33)

cos 2π = 1(34)

Proof. Just use (23) and (24) by setting x = 0, π
2 or π. �

Proposition 13.

sin
π

4
=

1√
2

(35)

cos
π

4
=

1√
2

(36)

sin
π

3
=

√
3

2
(37)

cos
π

3
=

1

2
(38)

sin
π

6
=

1

2
(39)

cos
π

6
=

√
3

2
(40)
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Proof. (35) follows from (11), (19) and (18):

sin2 π

4
=

1

2
(1− cos

π

2
) =

1

2

so from (18) we get sin π
4 = 1√

2
. Similarly one can prove (36).

To prove (37), note that from (12) and (29),

3 sin
π

3
− 4 sin3 π

3
= sinπ = 0.

Hence sin π
3 is a root of 3x− 4x3 = 0. Now we solve this cubic equation: if 3x− 4x3 = 0, then

x = 0, or 3− 4x2 = 0, so x = 0,±
√
3
2 . But sin π

3 > 0 by (18). Hence sin π
3 =

√
3
2 , as desired.

(38) then follows from (1) and (17):

cos2
π

6
= 1− sin2 π

6
= 1− 3

4
=

1

4

so cos π3 > 0 implies cos π3 = 1
2 .

Also, (39) follows from (27) and (38):

sin
π

6
= sin(

π

2
− π

3
) = cos

π

3
=

1

2
.

Similarly one can deduce (40). �

In what follows, we deduce some properties of tangent and cotangent: recall

tanx =
sinx

cosx
when cosx 6= 0, and

cotx =
1

tanx
=

cosx

sinx
when sinx 6= 0. Also

secx =
1

cosx
when cosx 6= 0, and

cscx =
1

sinx
when sinx 6= 0.

Proposition 14.

1 + tan2 x = sec2 x if cosx 6= 0(41)

1 + cot2 x = csc2 x if sinx 6= 0(42)

Proof. To prove (41), note that if cosx 6= 0, then

1 + tan2 x = 1 +
sin2 x

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x.

The proof of (42) is similar. �

The following is a compound angle formula for tangent:

Proposition 15. For all x, y ∈ R, we have

tan(x+ y) =
tanx+ tan y

1− tanx tan y
if cos(x+ y) 6= 0, cosx 6= 0 and cos y 6= 0(43)

tan(x− y) =
tanx− tan y

1 + tanx tan y
if cos(x− y) 6= 0, cosx 6= 0 and cos y 6= 0(44)

Proof. To prove (43), note that for x, y ∈ R, if cos(x− y) 6= 0, then

tan(x+ y) =
sin(x+ y)

cos(x+ y)
=

sinx cos y + cosx sin y

cosx cos y − sinx sin y
.

If further cosx 6= 0 and cos y 6= 0, then one divides both the numerator and denominator by
cosx cos y, and obtain (43).

(44) follows from (43) by replacing y by −y, and using that tan y = − tan y. �
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The following are formula that expresses sinx, cosx and tanx in terms of tan x
2 only. They

are useful formula in computing integrals involving trigonometric functions (via a technique
called t-substitution).

Proposition 16. For all x ∈ R, we have

tanx =
2 tan x

2

1− tan2 x
2

if cos
x

2
6= 0 and cosx 6= 0(45)

sinx =
2 tan x

2

1 + tan2 x
2

if cos
x

2
6= 0(46)

cosx =
1− tan2 x

2

1 + tan2 x
2

if cos
x

2
6= 0(47)

Proof. (45) follows from (43) by replacing both x and y there by x
2 .

To prove (46), note that if cos x2 6= 0, we can simplify the denominator of the right hand side,
and obtain:

2 tan x
2

1 + tan2 x
2

=
2 tan x

2

sec2 x2
= 2 tan

x

2
cos2

x

2
= 2 sin

x

2
cos

x

2
= sinx

(the last equality following from (6).)
To prove (47), note that if cos x2 6= 0, we can simplify the denominator of the right hand side,

and obtain:

1− tan2 x
2

1 + tan2 x
2

=
1− tan2 x

2

sec2 x2
= (1− tan2 x

2
) cos2

x

2
= cos2

x

2
− sin2 x

2
= cosx

(the last equality following from (7).) �

Finally, here are some half-angle formula for tangent:

Proposition 17. For all x ∈ R, we have

tan
x

2
=

sinx

1 + cosx
if cos

x

2
6= 0(48)

tan
x

2
=

1− cosx

sinx
if sin

x

2
6= 0 and cos

x

2
6= 0(49)

Proof. To prove (48), note that if cos x2 6= 0, then by double angle formula (6) and (8), we have

sinx

1 + cosx
=

2 sin x
2 cos x2

2 cos2 x2
=

sin x
2

cos x2
= tan

x

2
.

To prove (49), note that if sin x
2 6= 0 and cos x2 6= 0, then by double angle formula (6) and

(9), we have

1− cosx

sinx
=

2 sin2 x
2

2 sin x
2 cos x2

=
sin x

2

cos x2
= tan

x

2
.

�

We close by mentioning an alternative approach to all these, via complex numbers. The set
of all complex numbers will be denoted by C; it is the set of numbers of the form a+ bi, where
i2 = −1, and a, b ∈ R. They can be added, subtracted, multiplied and divided. Please refer to
any standard text on basic properties of complex numbers.

In this alternative approach, one first shows that one can define a function exp: C→ C such
that

exp(z) =
∞∑
n=0

zn

n!

for all complex numbers z (in particular, the series converges for all z ∈ C). Then one verifies
that

exp(z) exp(w) = exp(z + w)

for all complex numbers z, w ∈ C. (This can be done as in the real case.) Also, one checks that

exp(ix) = cosx+ i sinx
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for all real numbers x ∈ R. (This is the so-called Euler’s identity.) It follows that for all x ∈ R,
we have

(50) cosx =
1

2
(exp(ix) + exp(−ix))

and

(51) sinx =
1

2i
(exp(ix)− exp(−ix)).

Hence for any x, y ∈ R, we have

sin(x+ y) =
1

2i
(exp(i(x+ y))− exp(−i(x+ y)))

=
1

2i
(exp(ix) exp(iy)− exp(−ix) exp(−iy))

=
1

2i
((cosx+ i sinx)(cos y + i sin y)− (cosx− i sinx)(cos y − i sin y))

=
1

2i
(i cosx sin y + i sinx cos y + i cosx sin y + i sinx cos y)

= sinx cos y + cosx sin y,

as in (2). Similarly one can deduce (3), (4) and (5). One can then deduce the double angle
formula, the half-angle formula, etc as before. (In fact, sometimes one turns thing around, and
define the sine and cosine of a complex number by formula (51) and (50): in other words, for
z ∈ C, sometimes people define

sin z =
1

2i
(exp(iz)− exp(−iz))

and

cos z =
1

2
(exp(iz) + exp(−iz)).

Then the compound angle formula continues to hold for this complex sine and cosine, by the
same proof we just gave. They also admit the same power series expansions as in the real case:

sin z = z − z3

3!
+
z5

5!
− z7

7!
+ · · · =

∞∑
k=0

(−1)kz2k+1

(2k + 1)!

cos z = 1− z2

2!
+
z4

4!
− z6

6!
+ · · · =

∞∑
k=0

(−1)kz2k

(2k)!

But they also have many new properties: the most notable one is that they are no longer
bounded by 1 (in fact, one can check that cos(iy) = i cosh y → ∞ as y → ∞). You will learn
more about these functions in complex analysis.)


