
1. The Euler-Lagrange equations

Consider the action:

S =

∫ b

a

L(t, ϕ, ϕ̇)dt

Here ϕ = (ϕ1, . . . , ϕm) is a vector valued function of t, ϕ̇ = d
dt
ϕ.

L = L(t;u1, . . . , um; z1, . . . , zm) is called Lagrangian. We always
assume that L is smooth in t, u, z in the domain under consideration.

Let us take a variation of the action. Namely, let η(t) is a smooth
function so that η = 0 near a, b Let

S(ϵ) =

∫ b

a

L(t, ϕ+ ϵη,
˙︷ ︸︸ ︷

(ϕ+ ϵη))dt

Suppose L(t, ϕ+ ϵη,
˙︷ ︸︸ ︷

(ϕ+ ϵη)) is smooth for ϵ is small. Then

d

dϵ
S(ϵ)|ϵ=0 =

∫ b

a

(∑
k

ηk
∂L
∂ϕk

+
∑
k,µ

η̇k
∂L
∂ϕ̇k

)
dt

=

∫ b

a

(∑
k

ηk
(
∂L
∂ϕk

− d

dt

(
∂L
∂ϕ̇k

)))
dx.

Let

Ek =:
∂L
∂ϕk

− d

dt

(
∂L
∂ϕ̇k

)
for k = 1, . . . ,m. These are called Euler-Lagrange expression (E.-L.
expression.

The E.-L. equation is the system Ek = 0, i.e.

∂L
∂ϕk

− d

dt

(
∂L
∂ϕ̇k

)
= 0

for k = 1, . . . ,m.

Lemma 1. Let f = (f1, . . . , fm) be a vector valued continuous func-
tions on [a, b] such that ∫ b

a

∑
k

fkηkdt = 0

for any smooth functions ηk with compact supports in (a, b), i.e. ηk = 0
near a, b. Then fk = 0 for all k.

Theorem 1. A C2 function ϕ = (ϕ1, . . . , ϕm) which satisfies the E-L
equations for L above if and only if it is an extremal for S. That is
S ′(0) = 0 for all smooth variation.
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Example: Consider m particles in three space with coordinates
(xj, yj, zj) with mass mj. Then

L =
1

2

∑
j

mj

[
(ẋj)2 + (ẏj)2 + (żj)2

]
− V (t, x, y, z)

where V is the potential energy. Here ϕk are those xj, yj, zj which
depend only on t. ϕ̇k are those ẋj, etc.

E.-L. expressions are given by

E1j = − ∂V

∂xj
−mj

d2xj

dt2
;E2j = −∂V

∂yj
−mj

d2yj

dt2
;E3j = −∂V

∂zj
−mj

d2zj

dt2
.

2. Geodesics

Definition 1. Let M be a regular surface. It is said to be a geodesic
if and only if it is an extremal of the length functional with respect
to any smooth variation which vanishes near a, b and is parametrized
proportional to arc length.

Then length functional is defined as

ℓ(α) =

∫ b

a

|α̇|dt

if α : [a, b] → M is a regular curve. α is parametrized proportional to
arc length if |α̇| is constant in [a, b].

SupposeX : U → M is a coordinate chart, with (u1, u2) → X(u1, u2).
We want to find the equations for u1(t), u2(t) so that α(t) = X(u1(t), u2(t))
is a pregeodisic or geodesic.

Let gij = ⟨Xi,Xj⟩ be the first fundamental form. The Lagrangian L
of the length functional is

L =

(
2∑

i,j=1

giju̇
iu̇j

) 1
2

gij is a function of u1, u2. So L is a function of ui, zi, where zi cor-
responding to u̇i. It is smooth as long as (z1, z2) is not zero and
(u1, u2) ∈ U .

Let Γk
ij be the Christoffel symbols.

Lemma 2. Let X : U → M is a coordinate chart with coordinates
(u1, u2) Let α(t) = X(u1(t), u2(t)) be a regular curve on M . If α is
an extremal of the length functional, then u1, u2 satisfy the following
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differential equations:

(1)

{
ü1 +

∑2
i,j=1 Γ

1
iju̇

iu̇j = λu̇1;

ü2 +
∑2

i,j=1 Γ
2
iju̇

iu̇j = λu̇2

in [a, b], where

λ = −1

2

(
1

2

d

dt
log (gpqu̇

pu̇q)

)
.

Remark: The equations can also be written as

ük +
2∑

i,j=1

Γk
iju̇

iu̇j = λu̇k

for k = 1, 2.

Proof. (Sketch) Lagrangian L = (giju̇
iu̇j)

1
2 which is smooth in (u1, u2) ∈

U and (u̇1, u̇2) ̸= 0. For any smooth functions η1, η2 of t, the curve
α(t, ϵ) = X(u1(t) + ϵη1(t), u2(t) + ϵη2(t)) is regular and so the tangent
vectors are nonzero. Hence L is smooth for this values. Hence if α is
an extremal, then u1(t), u2(t) should satisfies the E-L equations. On
the other hand,

∂

∂uk
L =

1

2
(gpqu̇

pu̇q)−
1
2
∂gij
∂uk

u̇iu̇j.

∂

∂u̇k
L = (gpqu̇

pu̇q)−
1
2 gkju̇

j.

Hence the E-L equations are:

1

2
(gpqu̇

pu̇q)−
1
2
∂gij
∂uk

u̇iu̇j − d

dt

[
(gpqu̇

pu̇q)−
1
2 gkju̇

j
]
= 0.

Now

d

dt

[
(gpqu̇

pu̇q)−
1
2 gkju̇

j
]
=
(
gkju̇

j
) d

dt
(gpqu̇

pu̇q)−
1
2 + (gpqu̇

pu̇q)−
1
2

(
∂gkj
∂ur

u̇ru̇j + gkjü
j

)
.

Hence we have(
∂gkj
∂ui

u̇iu̇j + gkjü
j

)
− 1

2

∂gij
∂uk

u̇iu̇j = −1

2

(
gkju̇

j
) d

dt
log (gpqu̇

pu̇q)

Multiply both sides by gkl and sum on k, we have

ül + gklgkj,iu̇
iu̇j − 1

2
gklgij,ku̇

iu̇j = −u̇l

(
1

2

d

dt
log (gpqu̇

pu̇q)

)
.

From this the result follows. �
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Theorem 2. With the above notations, a regular curve α in M is a
geodesic if and only if

(2)

{
ü1 +

∑2
i,j=1 Γ

1
iju̇

iu̇j = 0;

ü2 +
∑2

i,j=1 Γ
2
iju̇

iu̇j = 0.

Proof. If α is a geodesic, then it is an extremal for the length func-
tional and is parametrized proportional to arc length. By Lemma 2,
we conclude that it satisfies (2).

Conversely, if α satisfies (2), then we want to prove that it is parametrized
proportional to arc length. If this is true. Then α is a geodesic by By
Lemma 2. We will prove that α is parametrized proportional
to arc length in the next section. �

Remark: A regular curve X(u1(t), u2(t)) is said to be a pregeodesic
if it satisfies (1) for some continuous function λ.

3. Geodesics and geodesic curvature

Recall the following: Let M be an oriented regular surface with
unit normal vector field N. Let α : [a, b] → M be a regular curve
parametrized by arc length. Let n be the unit normal vector field
along α so that α′,n,N are positively oriented. Then

α′′ = knN+ kgn

where kn is called the normal curvature of α and kg is called the geodesic
curvature of α. We want to find kg.

Now let X : U → M be a coordinate chart with coordinates u1, u2.
Let gij be the first fundamental form, and Γk

ij be the Christoffel sym-
bols.

Proposition 1. Let α(t) be a regular curve in X(U) so that α(t) =
X(u1(t), u2(t)). Then

α′′(t) =
2∑

k=1

Xk

(
u′′
k +

2∑
i,j=1

Γk
iju

′
iu

′
j

)
+ cN

for some function c(t). In particular, if α satisfies (2), then t is pro-
portional to arc length, i.e. |α′| =constant.

Moreover, if α is parametrized by arc length, N = X1×X1/|X1×X2|,
then

α′′(t) =
2∑

k=1

Xk

(
u′′
k +

2∑
i,j=1

Γk
iju

′
iu

′
j

)
+ knN.

Hence if α is parametrized proportional to arc length, then α is a geo-
desic if and only if its geodesic curvature is zero.
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Proof. (Sketch) α(t) = X(u1(t), u2(t)) is a curve on M . Then α′ =
u′
1X1 + u′

2X2.

α′′ =u′′
1X1 + u′′

2X2 + (u′
1)

2X11 + 2u′
1u

′
2X12 + (u′

2)
2X22)

=X1

(
u′′
1 + Γ1

11(u
′
1)

2 + 2Γ1
12u

′
1u

′
2 + Γ1

22(u
′
2)

2
)

+X2

(
u′′
2 + Γ2

11(u
′
1)

2 + 2Γ2
12u

′
1u

′
2 + Γ2

22(u
′
2)

2
)

+ cN

=
2∑

k=1

Xk

(
u′′
k +

2∑
i,j=1

Γk
iju

′
iu

′
j

)
+ cN.

�
Examples: Let M be a regular surface in R3. Let α be a regular

curve with |α′| = 1 in M such that α = P ∩ M where P is some
hyperplane so that P ⊥ M . Then α is a geodesic.

• Great circles of spheres are geodesics.
• Meridians of a surface revolution are geodesics. Questions: How
about parallels?

Before we state the next fact, we need to define an oriented surface
without referring to N.

Definition 2. A regular surface M is said to be orientable if it can be
covered by coordinate charts so that the coordinate transformation (or
reparametrization) is orientation preserving.

Proposition 2. Geodesic curvature is intrinsic in the sense that it
depends only on the first fundamental form and the orientation of a
regular surface.

Assignment 7, Due Friday Nov 9, 2018

(1) Suppose a regular surface M is parametrized by u1, u2 so that
the first fundamental form is given by

g11 = g22 =
1

1− 1
4

∑2
i=1(u

i)2
, g12 = 0.

Find the Gaussian curvature of the surface. Here we assume
that (u1)2 + (u2)2 < 4.

(2) Find the geodesics on the circular cylinder:M = {(x, y, z)| x2+
y2 = r2} where r > 0 is a constant. Here you may use the
parametrization of M as

X(u1, u2) = (cos u1, sinu1, u2).

A regular curve can be expressed as α(t) = (r cosu1(t), r sinu1(t), u2(t)),
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(3) Suppose α is a pregeodsic. Namely, α satisfies (1) in the note
for some continuous function λ. Let f(t) be functions so that
f ′ = −λ and F ′ = ef . Namely

F =

∫
exp(

∫
λ).

Reparametrized a by τ so that τ = F (t).
Prove that α(t) = α(t(τ)) as a curve parametrized by τ is a

geodesic.
(4) Suppose a regular surface M is parametrized by u1, u2 so that

the first fundamental form is given by

g11 = g22 =
1(

1− 1
4

∑2
i=1(u

i)2
)2 , g12 = 0.

Find the Gaussian curvature of the surface. Here we assume
that (u1)2 + (u2)2 < 4.


