1. The Euler-Lagrange equations

Consider the action:

$$S = \int_{a}^{b} \mathcal{L}(t,\phi,\dot{\phi}) dt$$

Here $\phi = (\phi^1, \dots, \phi^m)$ is a vector valued function of $t, \dot{\phi} = \frac{d}{dt}\phi$. $\mathcal{L} = \mathcal{L}(t; u^1, \dots, u^m; z^1, \dots, z^m)$ is called Lagrangian. We always

assume that \mathcal{L} is smooth in t, u, z in the domain under consideration. Let us take a variation of the action. Namely, let $\eta(t)$ is a smooth function so that $\eta = 0$ near a, b Let

$$S(\epsilon) = \int_{a}^{b} \mathcal{L}(t, \phi + \epsilon \eta, \overbrace{(\phi + \epsilon \eta)}^{:}) dt$$

Suppose $\mathcal{L}(t, \phi + \epsilon \eta, (\phi + \epsilon \eta))$ is smooth for ϵ is small. Then

$$\frac{d}{d\epsilon}S(\epsilon)|_{\epsilon=0} = \int_{a}^{b} \left(\sum_{k} \eta^{k} \frac{\partial \mathcal{L}}{\partial \phi^{k}} + \sum_{k,\mu} \dot{\eta}^{k} \frac{\partial \mathcal{L}}{\partial \dot{\phi}^{k}}\right) dt$$
$$= \int_{a}^{b} \left(\sum_{k} \eta^{k} \left(\frac{\partial \mathcal{L}}{\partial \phi^{k}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}^{k}}\right)\right)\right) dx$$

Let

$$E_k =: \frac{\partial \mathcal{L}}{\partial \phi^k} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}^k} \right)$$

for k = 1, ..., m. These are called Euler-Lagrange expression (E.-L. expression.

The E.-L. equation is the system $E_k = 0$, i.e.

$$\frac{\partial \mathcal{L}}{\partial \phi^k} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}^k} \right) = 0$$

for k = 1, ..., m.

Lemma 1. Let $f = (f_1, \ldots, f_m)$ be a vector valued continuous functions on [a, b] such that

$$\int_{a}^{b} \sum_{k} f_k \eta_k dt = 0$$

for any smooth functions η_k with compact supports in (a, b), i.e. $\eta_k = 0$ near a, b. Then $f_k = 0$ for all k.

Theorem 1. A C^2 function $\phi = (\phi^1, \dots, \phi^m)$ which satisfies the E-L equations for \mathcal{L} above if and only if it is an extremal for S. That is S'(0) = 0 for all smooth variation.

Example: Consider *m* particles in three space with coordinates (x^j, y^j, z^j) with mass \mathfrak{m}_j . Then

$$\mathcal{L} = \frac{1}{2} \sum_{j} \mathfrak{m}_{j} \left[(\dot{x}^{j})^{2} + (\dot{y}^{j})^{2} + (\dot{z}^{j})^{2} \right] - V(t, x, y, z)$$

where V is the potential energy. Here ϕ^k are those x^j, y^j, z^j which depend only on t. $\dot{\phi}^k$ are those \dot{x}^j , etc.

E.-L. expressions are given by

$$E_{1j} = -\frac{\partial V}{\partial x^j} - \mathfrak{m}_j \frac{d^2 x^j}{dt^2}; E_{2j} = -\frac{\partial V}{\partial y^j} - \mathfrak{m}_j \frac{d^2 y^j}{dt^2}; E_{3j} = -\frac{\partial V}{\partial z^j} - \mathfrak{m}_j \frac{d^2 z^j}{dt^2}.$$

2. Geodesics

Definition 1. Let M be a regular surface. It is said to be a *geodesic* if and only if it is an extremal of the length functional with respect to any smooth variation which vanishes near a, b and is *parametrized* proportional to arc length.

Then length functional is defined as

$$\ell(\alpha) = \int_{a}^{b} |\dot{\alpha}| dt$$

if $\alpha : [a, b] \to M$ is a regular curve. α is parametrized proportional to arc length if $|\dot{\alpha}|$ is constant in [a, b].

Suppose $\mathbf{X} : U \to M$ is a coordinate chart, with $(u^1, u^2) \to \mathbf{X}(u^1, u^2)$. We want to find the equations for $u^1(t), u^2(t)$ so that $\alpha(t) = \mathbf{X}(u^1(t), u^2(t))$ is a pregeodisic or geodesic.

Let $g_{ij} = \langle \mathbf{X}_i, \mathbf{X}_j \rangle$ be the first fundamental form. The Lagrangian \mathcal{L} of the length functional is

$$\mathcal{L} = \left(\sum_{i,j=1}^{2} g_{ij} \dot{u}^{i} \dot{u}^{j}\right)^{\frac{1}{2}}$$

 g_{ij} is a function of u^1, u^2 . So \mathcal{L} is a function of u^i, z^i , where z^i corresponding to \dot{u}^i . It is smooth as long as (z^1, z^2) is not zero and $(u^1, u^2) \in U$.

Let Γ_{ij}^k be the Christoffel symbols.

Lemma 2. Let $\mathbf{X} : U \to M$ is a coordinate chart with coordinates (u^1, u^2) Let $\alpha(t) = \mathbf{X}(u^1(t), u^2(t))$ be a regular curve on M. If α is an extremal of the length functional, then u^1, u^2 satisfy the following

 $\mathbf{2}$

differential equations:

(1)
$$\begin{cases} \ddot{u}^{1} + \sum_{i,j=1}^{2} \Gamma^{1}_{ij} \dot{u}^{i} \dot{u}^{j} = \lambda \dot{u}^{1}; \\ \ddot{u}^{2} + \sum_{i,j=1}^{2} \Gamma^{2}_{ij} \dot{u}^{i} \dot{u}^{j} = \lambda \dot{u}^{2}; \end{cases}$$

in [a, b], where

$$\lambda = -\frac{1}{2} \left(\frac{1}{2} \frac{d}{dt} \log \left(g_{pq} \dot{u}^p \dot{u}^q \right) \right).$$

Remark: The equations can also be written as

$$\ddot{u}^{\mathbf{k}} + \sum_{i,j=1}^{2} \Gamma^{\mathbf{k}}_{ij} \dot{u}^{i} \dot{u}^{j} = \lambda \dot{u}^{\mathbf{k}}$$

for k = 1, 2.

Proof. (Sketch) Lagrangian $\mathcal{L} = (g_{ij}\dot{u}^i\dot{u}^j)^{\frac{1}{2}}$ which is smooth in $(u^1, u^2) \in U$ and $(\dot{u}^1, \dot{u}^2) \neq 0$. For any smooth functions η^1, η^2 of t, the curve $\alpha(t, \epsilon) = \mathbf{X}(u^1(t) + \epsilon \eta^1(t), u^2(t) + \epsilon \eta^2(t))$ is regular and so the tangent vectors are nonzero. Hence \mathcal{L} is smooth for this values. Hence if α is an extremal, then $u^{1}(t), u^{2}(t)$ should satisfies the E-L equations. On the other hand,

$$\frac{\partial}{\partial u^k} \mathcal{L} = \frac{1}{2} \left(g_{pq} \dot{u}^p \dot{u}^q \right)^{-\frac{1}{2}} \frac{\partial g_{ij}}{\partial u^k} \dot{u}^i \dot{u}^j.$$
$$\frac{\partial}{\partial \dot{u}^k} \mathcal{L} = \left(g_{pq} \dot{u}^p \dot{u}^q \right)^{-\frac{1}{2}} g_{kj} \dot{u}^j.$$

Hence the E-L equations are:

$$\frac{1}{2} \left(g_{pq} \dot{u}^p \dot{u}^q \right)^{-\frac{1}{2}} \frac{\partial g_{ij}}{\partial u^k} \dot{u}^i \dot{u}^j - \frac{d}{dt} \left[\left(g_{pq} \dot{u}^p \dot{u}^q \right)^{-\frac{1}{2}} g_{kj} \dot{u}^j \right] = 0$$

Now

$$\frac{d}{dt} \left[(g_{pq} \dot{u}^p \dot{u}^q)^{-\frac{1}{2}} g_{kj} \dot{u}^j \right] = \left(g_{kj} \dot{u}^j \right) \frac{d}{dt} \left(g_{pq} \dot{u}^p \dot{u}^q \right)^{-\frac{1}{2}} + \left(g_{pq} \dot{u}^p \dot{u}^q \right)^{-\frac{1}{2}} \left(\frac{\partial g_{kj}}{\partial u^r} \dot{u}^r \dot{u}^j + g_{kj} \ddot{u}^j \right).$$

Hence we have

$$\left(\frac{\partial g_{kj}}{\partial u^i}\dot{u}^i\dot{u}^j + g_{kj}\ddot{u}^j\right) - \frac{1}{2}\frac{\partial g_{ij}}{\partial u^k}\dot{u}^i\dot{u}^j = -\frac{1}{2}\left(g_{kj}\dot{u}^j\right)\frac{d}{dt}\log\left(g_{pq}\dot{u}^p\dot{u}^q\right)$$

Multiply both sides by g^{kl} and sum on k, we have

$$\ddot{u}^{l} + g^{kl}g_{kj,i}\dot{u}^{i}\dot{u}^{j} - \frac{1}{2}g^{kl}g_{ij,k}\dot{u}^{i}\dot{u}^{j} = -\dot{u}^{l}\left(\frac{1}{2}\frac{d}{dt}\log\left(g_{pq}\dot{u}^{p}\dot{u}^{q}\right)\right).$$
a this the result follows.

From this the result follows.

Theorem 2. With the above notations, a regular curve α in M is a geodesic if and only if

(2)
$$\begin{cases} \ddot{u}^1 + \sum_{i,j=1}^2 \Gamma^1_{ij} \dot{u}^i \dot{u}^j = 0; \\ \ddot{u}^2 + \sum_{i,j=1}^2 \Gamma^2_{ij} \dot{u}^i \dot{u}^j = 0. \end{cases}$$

Proof. If α is a geodesic, then it is an extremal for the length functional and is parametrized proportional to arc length. By Lemma 2, we conclude that it satisfies (2).

Conversely, if α satisfies (2), then we want to prove that it is parametrized proportional to arc length. If this is true. Then α is a geodesic by By Lemma 2. We will prove that α is parametrized proportional to arc length in the next section.

Remark: A regular curve $\mathbf{X}(u^1(t), u^2(t))$ is said to be a *pregeodesic* if it satisfies (1) for some continuous function λ .

3. Geodesics and geodesic curvature

Recall the following: Let M be an oriented regular surface with unit normal vector field **N**. Let $\alpha : [a, b] \to M$ be a regular curve parametrized by arc length. Let **n** be the unit normal vector field along α so that $\alpha', \mathbf{n}, \mathbf{N}$ are positively oriented. Then

$$\alpha'' = k_n \mathbf{N} + k_q \mathbf{n}$$

where k_n is called the normal curvature of α and k_g is called the geodesic curvature of α . We want to find k_q .

Now let $\mathbf{X} : U \to M$ be a coordinate chart with coordinates u^1, u^2 . Let g_{ij} be the first fundamental form, and Γ_{ij}^k be the Christoffel symbols.

Proposition 1. Let $\alpha(t)$ be a regular curve in $\mathbf{X}(U)$ so that $\alpha(t) = \mathbf{X}(u^1(t), u^2(t))$. Then

$$\alpha''(t) = \sum_{k=1}^{2} \mathbf{X}_k \left(u_k'' + \sum_{i,j=1}^{2} \Gamma_{ij}^k u_i' u_j' \right) + c \mathbf{N}$$

for some function c(t). In particular, if α satisfies (2), then t is proportional to arc length, i.e. $|\alpha'| = constant$.

Moreover, if α is parametrized by arc length, $\mathbf{N} = \mathbf{X}_1 \times \mathbf{X}_1 / |\mathbf{X}_1 \times \mathbf{X}_2|$, then

$$\alpha''(t) = \sum_{k=1}^{2} \mathbf{X}_k \left(u_k'' + \sum_{i,j=1}^{2} \Gamma_{ij}^k u_i' u_j' \right) + k_n \mathbf{N}.$$

Hence if α is parametrized proportional to arc length, then α is a geodesic if and only if its geodesic curvature is zero.

Proof. (Sketch) $\alpha(t) = \mathbf{X}(u_1(t), u_2(t))$ is a curve on M. Then $\alpha' = u'_1 \mathbf{X}_1 + u'_2 \mathbf{X}_2$.

$$\begin{aligned} \alpha'' &= u_1'' \mathbf{X}_1 + u_2'' \mathbf{X}_2 + (u_1')^2 \mathbf{X}_{11} + 2u_1' u_2' \mathbf{X}_{12} + (u_2')^2 \mathbf{X}_{22}) \\ &= \mathbf{X}_1 \left(u_1'' + \Gamma_{11}^1 (u_1')^2 + 2\Gamma_{12}^1 u_1' u_2' + \Gamma_{22}^1 (u_2')^2 \right) \\ &+ \mathbf{X}_2 \left(u_2'' + \Gamma_{11}^2 (u_1')^2 + 2\Gamma_{12}^2 u_1' u_2' + \Gamma_{22}^2 (u_2')^2 \right) \\ &+ c \mathbf{N} \\ &= \sum_{k=1}^2 \mathbf{X}_k \left(u_k'' + \sum_{i,j=1}^2 \Gamma_{ij}^k u_i' u_j' \right) + c \mathbf{N}. \end{aligned}$$

Examples: Let M be a regular surface in \mathbb{R}^3 . Let α be a regular curve with $|\alpha'| = 1$ in M such that $\alpha = P \cap M$ where P is some hyperplane so that $P \perp M$. Then α is a geodesic.

- Great circles of spheres are geodesics.
- Meridians of a surface revolution are geodesics. *Questions: How about parallels?*

Before we state the next fact, we need to define an oriented surface without referring to N.

Definition 2. A regular surface M is said to be orientable if it can be covered by coordinate charts so that the coordinate transformation (or reparametrization) is orientation preserving.

Proposition 2. Geodesic curvature is intrinsic in the sense that it depends only on the first fundamental form and the orientation of a regular surface.

Assignment 7, Due Friday Nov 9, 2018

(1) Suppose a regular surface M is parametrized by u^1, u^2 so that the first fundamental form is given by

$$g_{11} = g_{22} = \frac{1}{1 - \frac{1}{4} \sum_{i=1}^{2} (u^i)^2}, \quad g_{12} = 0$$

Find the Gaussian curvature of the surface. Here we assume that $(u^1)^2 + (u^2)^2 < 4$.

(2) Find the geodesics on the circular cylinder: $M = \{(x, y, z) | x^2 + y^2 = r^2\}$ where r > 0 is a constant. Here you may use the parametrization of M as

$$\mathbf{X}(u^{1}, u^{2}) = (\cos u^{1}, \sin u^{1}, u^{2}).$$

A regular curve can be expressed as $\alpha(t) = (r \cos u^1(t), r \sin u^1(t), u^2(t)),$

(3) Suppose α is a pregeodsic. Namely, α satisfies (1) in the note for some continuous function λ . Let f(t) be functions so that $f' = -\lambda$ and $F' = e^f$. Namely

$$F = \int \exp(\int \lambda).$$

Reparametrized a by τ so that $\tau = F(t)$.

Prove that $\alpha(t) = \alpha(t(\tau))$ as a curve parametrized by τ is a geodesic.

(4) Suppose a regular surface M is parametrized by u^1, u^2 so that the first fundamental form is given by

$$g_{11} = g_{22} = \frac{1}{\left(1 - \frac{1}{4}\sum_{i=1}^{2}(u^{i})^{2}\right)^{2}}, g_{12} = 0.$$

Find the Gaussian curvature of the surface. Here we assume that $(u^1)^2 + (u^2)^2 < 4$.

 $\mathbf{6}$