More on principal curvatures and normal curvatures

Proposition 3. (Euler formula) Let e_1, e_2 be orthonormal in $T_p(M)$ where M is a regular surface patch. Suppose e_1, e_2 are in principal direction with principal curvatures k_1, k_2 respectivel. Let $v = e_1 \cos \theta + e^2 \sin \theta$ be a unit vector in $T_p(M)$. Then the normal curvature in the direction v is given by $k_1 \cos^2 \theta + k_2 \sin^2 \theta$.

Proposition 4. Let $\mathbf{X} : U \to \mathbb{R}^3$ be a regular surface patch and let $M = \mathbf{X}(U)$. Suppose every point in M is umbilical. Then M is contained in a plane or in a sphere.

Proof. (Sketch) Let **N** be a unit normal vector field on M and let S be the shape operator. Then $S_p(\mathbf{v}) = \lambda \mathbf{v}$ for any $\mathbf{v} \in T_p(M)$ for some number λ . Here λ may depend on the point p but not \mathbf{v} . So we write $\lambda = \lambda(u, v)$.

- λ is constant. That is $\lambda_u = \lambda_v = 0$ everywhere (Why?)
- If $\lambda = 0$, then **N** is constant and $\langle \mathbf{X}(u, v) \mathbf{X}(u_0, v_0), \mathbf{N} \rangle = 0$ for some $(u_0, v_0) \in U$. (Why?)
- If $\lambda \neq 0$, then $\mathbf{X} \frac{1}{\lambda}\mathbf{N}$ is a constant vector \mathbf{a} , say. Then $|\mathbf{X} \mathbf{a}| = 1/|\lambda|$. (Why?)

Definition 3. Let p be a point in a regular surface patch. Then it is called

- 1. Elliptic if $det(\mathcal{S}_p) > 0$.
- 2. Hyperbolic if $\det(\mathcal{S}_p) < 0$
- 3. Parabolic if $\det(\mathcal{S}_p) = 0$ but $\mathcal{S}_p \neq 0$.
- 4. Planar if $\mathcal{S}_p = 0$.

Suppose p is not a planar point. Let e_1, e_2 be the principal directions with principal curvature k_1, k_2 with $\mathbf{N} = e_1 \times e_2$. We choose the coordinates in \mathbb{R}^3 as follows: p is the origin, e_1 is the positive x-axis direction, e_2 is the positive y-axis direction. Then $\mathbf{X}(U)$ is a graph over xy-plane locally. That is the surface can be expressed as (x, y, f(x, y)).

Proposition 5. Near p = (0, 0, 0), the surface the graph of

$$f(x,y) = \frac{1}{2}(k_1x^2 + k_2y^2) + o(x^2 + y^2).$$

Hence locally, the regular surface patch is a

- elliptic paraboloid if p is elliptic;
- hyperbolic paraboloid if p is hyperbolic;
- parabolic cylinder if p is parabolic.

Proof. Since f(0,0) = 0, $f_x(0,0) = 0$, $f_y(0,0) = 0$, we have

$$f(x,y) = \frac{1}{2}(f_{xx}(0,0)x^2 + 2f_{xy}(0,0)xy + f_{yy}(0,0)y^2) + o(x^2 + y^2).$$

Note that $\mathbf{X}_x = (1, 0, f_x), \mathbf{X}_y = (0, 1, f_y), \mathbf{X}_{xx} = (0, 0, f_{xx}), \mathbf{X}_{xy} = \mathbf{X}_{xx} = (0, 0, f_{xy}), \mathbf{X}_{yy} = (0, 0, f_{yy})$. At $p, f_{xx} = k_1, f_{xy} = 0, f_{yy} = k_2$. (Why?)

г	-	-	-	٦
L				I
L				I