
Curves on surfaces

1. Basic facts on symmetric bilinear form

Let (V, ⟨· , ·⟩) be a finite dimensional inner product space and let B
be a symmetric bilinear form on V .

• Let Q be the corresponding quadratic form, Q(v) = B(v,v)
• A be the corresponding self-adjoint operator: ⟨A(v),w) = B(v,w).

Theorem 1. Let (V, ⟨· , ·⟩) be a finite dimensional inner product space
of dimension n and let B be a symmetric bilinear form. Then there is
an orthonormal basis v1, . . . ,vn such that B is diagonalized. Namely,
B(vi,vj) = λiδij. vi is an eigenvector of A with eigenvalue λi: A(vi) =
λivi. Moreover, if v =

∑n
i=1 x

ivi, then Q(v) =
∑n

i=1 λi(x
i)2.

2. Principal curvatures

Let X : U → R3 be a regular surface patch, and M = X(U). Let N
be a unit normal vector field on M . Let p ∈ Tp(M) and let IIp be the
second fundamental form of p at M with respect to N.

Definition 1. Let e1, e2 be an orthonormal basis on Tp(M) which
diagonalizes IIp with eigenvalues k1 and k2. Then k1, k2 are called
the principal curvatures of M at p and e1, e2 are called the principal
directions.

Proposition 1. With the above notations, if k1 = k2 = k, then ev-
ery direction is a principal direction and in this case, Sp = kid. (In
this case, the point is said to be umbilical.) Moreover, the Gaussian
curvature and the mean curvature are given by K(p) = k1k2, and
H(p) = 1

2
(k1 + k2).

3. Normal curvatures

Let M be a regular surface patch. Let N be a smooth unit normal
vector field on M . (Note: There are two choices of unit normal vector
fields). Let α(s) be a smooth curve on M parametrized by arc length.
Let T = α′ and let n(s) be the unit vector at α(s) such that n ∈
Tα(s)(M) and such that {T,n,N} is positively oriented, i.e. n = N×T .

Lemma 1. T ′ is a linear combination of n and N: T ′ = kgn + knN
for some smooth functions kn and kg on α(s).

Definition 2. As in the lemma, kn(s) is called the normal curvature
of α at α(s) and kg(s) is called the geodesic curvature of α at α(s).

Facts:
1
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(i) kn and kg depend on the choice of n.
(ii) We will see later that kg is intrinsic: it depends only on the first

fundamental form and the orientation of the surface.
(iii) Let k be the curvature of α′. Suppose k is not zero. LetN be the

normal of α (recalled α′′ = kN). Then kn = k⟨N,N⟩ = k cos θ
where θ is the angle between N and N. If k = 0, then T ′ = 0
and kn = kg = 0.

For the time being we only discuss normal curvature. The geometric
meaning of the second fundamental form is the following:

Proposition 2. Let M be a regular surface patch and N be a smooth
unit normal vector field on M . Let II be the second fundamental form
of M (w.r.t. N) and let p ∈ M . Suppose v ∈ Tp(M) with unit length
and suppose α(s) is a smooth curve of M parametrized by arclength
with α(0) = p and α′(0) = v. Then

kn(0) = IIp(v,v)
where kn is the normal curvature of α at α(0) = p.

Corollary 1. With the same notation as in the proposition, we have
the following:

(i) Let α and β be two regular curves parametrized by arc length
passing through p. Suppose α and β are tangent at p. Then the
normal curvatures of α and β at p are equal.

(ii) Let k1 and k2 be the eigenvalues of IIp with k1 ≤ k2. Then all
normal curvatures are between k1 and k2.
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Proof. (On symmetric bilinear form) We just prove the case that n = 2.
Let S be the set in V with ||v||2 = ⟨v,v⟩ = 1. Then B(v,v) attains
maximum on S at some v. Let v1 ∈ S be such that

B(v1,v1) = max
v∈S

B(v,v).

Let v2 ∈ S such that v1 ⊥ v2. It is sufficient to prove that B(v1,v2) =
0. Let t ∈ R and let

f(t) =
B(v1 + tv2,v1 + tv2)

||v1 + tv2||2
.

Then f ′(0) = 0. Hence

0 =2B(v1,v2)− 2B(v1,v1)⟨v1,v2⟩
=2B(v1,v2).

Note that λ2 = B(v2,v2) = minv∈S B(v,v).
Now ⟨A(v1),v1⟩ = B(v1,v1) = λ1 = λ1⟨v1,v1⟩; ⟨A(v1),v2⟩ =

B(v1,v2) = 0 = ⟨v1,v2⟩. Hence

⟨A(v1)− λ1v1,vi⟩ = 0

for i = 1, 2. Hence A(v1) = λ1v1.
Let v =

∑n
i=1 x

ivi, then

Q(v) =B(v,v)

=
n∑

i,j=1

xixjB(vi,vj)

=
n∑

i=1

λi(x
i)2.

�
Let M be a regular orientable surface with unit normal vector field

n. Let f be a smooth function on M which is nowhere zero. Let p ∈ M
and let v1 and v2 form an orthonormal basis for Tp(M).

(i) Prove that the Gaussian curvature of M at p is given by:

K =
⟨d(fn)(v1)× d(fn)(v2),n⟩

f 2
.

Note d(fn)(v) is defined as follow: let α be the curve on M with
α(0) = p, α′(0) = v, then

d(fn)(v) =
d

dt
(f(α(t))n(α(t)))

∣∣
t=0

.
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(ii) Let M be the ellipsoid

h(x, y, z) :=
x2

a2
+

y2

b2
+

z2

c2
= 1.

Let f be the restriction of the function(
x2

a4
+

y2

b4
+

z2

c4

) 1
2

.

Apply (i) to show that the Gaussian curvature is given by

K =
1

f 4a2b2c2
.

(Hint: We may take n = ∇h
|∇h| . Note that |∇h| = 2f and so d(fn)(v) =(

v1
a2
, v2
v2
, v3
c2

)
if v = (v1, v2, v3).)


