Curves on surfaces

1. BASIC FACTS ON SYMMETRIC BILINEAR FORM

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space and let *B* be a *symmetric* bilinear form on *V*.

- Let Q be the corresponding quadratic form, $Q(\mathbf{v}) = B(\mathbf{v}, \mathbf{v})$
- A be the corresponding self-adjoint operator: $\langle A(\mathbf{v}), \mathbf{w} \rangle = B(\mathbf{v}, \mathbf{w})$.

Theorem 1. Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space of dimension n and let B be a symmetric bilinear form. Then there is an orthonormal basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ such that B is diagonalized. Namely, $B(\mathbf{v}_i, \mathbf{v}_j) = \lambda_i \delta_{ij}$. \mathbf{v}_i is an eigenvector of A with eigenvalue λ_i : $A(\mathbf{v}_i) =$ $\lambda_i \mathbf{v}_i$. Moreover, if $\mathbf{v} = \sum_{i=1}^n x^i \mathbf{v}_i$, then $Q(\mathbf{v}) = \sum_{i=1}^n \lambda_i (x^i)^2$.

2. Principal curvatures

Let $\mathbf{X} : U \to \mathbb{R}^3$ be a regular surface patch, and $M = \mathbf{X}(U)$. Let \mathbf{N} be a unit normal vector field on M. Let $p \in T_p(M)$ and let \mathbb{II}_p be the second fundamental form of p at M with respect to \mathbf{N} .

Definition 1. Let \mathbf{e}_1 , \mathbf{e}_2 be an orthonormal basis on $T_p(M)$ which diagonalizes \mathbb{II}_p with eigenvalues k_1 and k_2 . Then k_1, k_2 are called the *principal curvatures* of M at p and \mathbf{e}_1 , \mathbf{e}_2 are called the principal directions.

Proposition 1. With the above notations, if $k_1 = k_2 = k$, then every direction is a principal direction and in this case, $S_p = kid$. (In this case, the point is said to be umbilical.) Moreover, the Gaussian curvature and the mean curvature are given by $K(p) = k_1k_2$, and $H(p) = \frac{1}{2}(k_1 + k_2)$.

3. NORMAL CURVATURES

Let M be a regular surface patch. Let \mathbf{N} be a smooth unit normal vector field on M. (Note: There are two choices of unit normal vector fields). Let $\alpha(s)$ be a smooth curve on M parametrized by arc length. Let $T = \alpha'$ and let $\mathbf{n}(s)$ be the unit vector at $\alpha(s)$ such that $\mathbf{n} \in T_{\alpha(s)}(M)$ and such that $\{T, \mathbf{n}, \mathbf{N}\}$ is positively oriented, i.e. $\mathbf{n} = \mathbf{N} \times T$.

Lemma 1. T' is a linear combination of \mathbf{n} and \mathbf{N} : $T' = k_g \mathbf{n} + k_n \mathbf{N}$ for some smooth functions k_n and k_g on $\alpha(s)$.

Definition 2. As in the lemma, $k_n(s)$ is called the *normal curvature* of α at $\alpha(s)$ and $k_g(s)$ is called the *geodesic curvature* of α at $\alpha(s)$.

Facts:

- (i) k_n and k_g depend on the choice of **n**.
- (ii) We will see later that k_g is intrinsic: it depends only on the first fundamental form *and* the orientation of the surface.
- (iii) Let k be the curvature of α' . Suppose k is not zero. Let N be the normal of α (recalled $\alpha'' = kN$). Then $k_n = k \langle N, \mathbf{N} \rangle = k \cos \theta$ where θ is the angle between N and N. If k = 0, then T' = 0 and $k_n = k_g = 0$.

For the time being we only discuss normal curvature. The geometric meaning of the second fundamental form is the following:

Proposition 2. Let M be a regular surface patch and \mathbf{N} be a smooth unit normal vector field on M. Let \mathbb{II} be the second fundamental form of M (w.r.t. \mathbf{N}) and let $p \in M$. Suppose $\mathbf{v} \in T_p(M)$ with unit length and suppose $\alpha(s)$ is a smooth curve of M parametrized by arclength with $\alpha(0) = p$ and $\alpha'(0) = \mathbf{v}$. Then

$$k_n(0) = \mathbb{II}_p(\mathbf{v}, \mathbf{v})$$

where k_n is the normal curvature of α at $\alpha(0) = p$.

Corollary 1. With the same notation as in the proposition, we have the following:

- (i) Let α and β be two regular curves parametrized by arc length passing through p. Suppose α and β are tangent at p. Then the normal curvatures of α and β at p are equal.
- (ii) Let k_1 and k_2 be the eigenvalues of \mathbb{II}_p with $k_1 \leq k_2$. Then all normal curvatures are between k_1 and k_2 .

 $\mathbf{2}$

Proof. (On symmetric bilinear form) We just prove the case that n = 2. Let S be the set in V with $||\mathbf{v}||^2 = \langle \mathbf{v}, \mathbf{v} \rangle = 1$. Then $B(\mathbf{v}, \mathbf{v})$ attains maximum on S at some \mathbf{v} . Let $\mathbf{v}_1 \in S$ be such that

$$B(\mathbf{v}_1, \mathbf{v}_1) = \max_{\mathbf{v} \in S} B(\mathbf{v}, \mathbf{v}).$$

Let $\mathbf{v}_2 \in S$ such that $\mathbf{v}_1 \perp \mathbf{v}_2$. It is sufficient to prove that $B(\mathbf{v}_1, \mathbf{v}_2) = 0$. Let $t \in \mathbb{R}$ and let

$$f(t) = \frac{B(\mathbf{v}_1 + t\mathbf{v}_2, \mathbf{v}_1 + t\mathbf{v}_2)}{||\mathbf{v}_1 + t\mathbf{v}_2||^2}.$$

Then f'(0) = 0. Hence

$$0 = 2B(\mathbf{v}_1, \mathbf{v}_2) - 2B(\mathbf{v}_1, \mathbf{v}_1) \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$

=2B(\mathbf{v}_1, \mathbf{v}_2).

Note that $\lambda_2 = B(\mathbf{v}_2, \mathbf{v}_2) = \min_{\mathbf{v} \in S} B(\mathbf{v}, \mathbf{v}).$ Now $\langle A(\mathbf{v}_1), \mathbf{v}_1 \rangle = B(\mathbf{v}_1, \mathbf{v}_1) = \lambda_1 = \lambda_1 \langle \mathbf{v}_1, \mathbf{v}_1 \rangle; \langle A(\mathbf{v}_1), \mathbf{v}_2 \rangle = B(\mathbf{v}_1, \mathbf{v}_2) = 0 = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle.$ Hence

$$\langle A(\mathbf{v}_1) - \lambda_1 \mathbf{v}_1, \mathbf{v}_i \rangle = 0$$

for i = 1, 2. Hence $A(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1$. Let $\mathbf{v} = \sum_{i=1}^n x^i \mathbf{v}_i$, then

$$Q(\mathbf{v}) = B(\mathbf{v}, \mathbf{v})$$
$$= \sum_{i,j=1}^{n} x^{i} x^{j} B(\mathbf{v}_{i}, \mathbf{v}_{j})$$
$$= \sum_{i=1}^{n} \lambda_{i} (x^{i})^{2}.$$

Let M be a regular orientable surface with unit normal vector field **n**. Let f be a smooth function on M which is nowhere zero. Let $p \in M$ and let \mathbf{v}_1 and \mathbf{v}_2 form an orthonormal basis for $T_p(M)$.

(i) Prove that the Gaussian curvature of M at p is given by:

$$K = \frac{\langle d(f\mathbf{n})(\mathbf{v}_1) \times d(f\mathbf{n})(\mathbf{v}_2), \mathbf{n} \rangle}{f^2}.$$

Note $d(f\mathbf{n})(\mathbf{v})$ is defined as follow: let α be the curve on M with $\alpha(0) = p, \alpha'(0) = \mathbf{v}$, then

$$d(f\mathbf{n})(\mathbf{v}) = \frac{d}{dt}(f(\alpha(t))\mathbf{n}(\alpha(t)))\big|_{t=0}$$

(ii) Let M be the ellipsoid

$$h(x, y, z) := \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Let f be the restriction of the function

$$\left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^{\frac{1}{2}}.$$

Apply (i) to show that the Gaussian curvature is given by

$$K = \frac{1}{f^4 a^2 b^2 c^2}.$$

(Hint: We may take $\mathbf{n} = \frac{\nabla h}{|\nabla h|}$. Note that $|\nabla h| = 2f$ and so $d(f\mathbf{n})(\mathbf{v}) = \left(\frac{v_1}{a^2}, \frac{v_2}{v^2}, \frac{v_3}{c^2}\right)$ if $\mathbf{v} = (v_1, v_2, v_3)$.)