More on curvature and torsion

1. CURVATURE AND TORSION IN GENERAL PARAMETER

Proposition 1. Let $\alpha(t)$ be a regular curve with nonzero curvature. Then the curvature and torsion are given by:

$$\left\{ \begin{array}{ll} \kappa = & \frac{|\alpha' \times \alpha''|}{|\alpha'|^3} \\ \tau = & \frac{<\alpha' \times \alpha'', \alpha'''>}{|\alpha' \times \alpha''|^2}. \end{array} \right.$$

Here ' always means differentiation with respect to t.

Proof. Let $\alpha(t)$ be a regular curve with nonzero curvature. Then

$$\alpha' = |\alpha'|T,$$

(1)

$$\alpha'' = \kappa |\alpha'|^2 N + |\alpha'|^{-1} < \alpha', \alpha'' > T.$$

Hence

$$< \alpha'', \alpha'' > = \kappa^2 |\alpha'|^4 + |\alpha'|^{-2} < \alpha', \alpha'' >^2,$$

and

$$\begin{split} \kappa^2 &= \frac{<\alpha'', \alpha'' > < \alpha', \alpha' > - < \alpha', \alpha'' >^2}{|\alpha'|^6} \\ &= \frac{|\alpha' \times \alpha''|^2}{|\alpha'|^6}. \end{split}$$

To compute τ , note that

$$\alpha''' = \kappa(-kT + \tau B)|\alpha'|^3 + f(t)T + g(t)N$$

for some function f and g. (Why?). So

$$\tau = \frac{1}{\kappa} \frac{<\alpha^{\prime\prime\prime}, B>}{|\alpha^{\prime}|^3}.$$

Use (1)

$$B = T \times N$$
$$= \frac{T \times \alpha''}{k|\alpha'|^2}$$
$$= \frac{\alpha' \times \alpha''}{k|\alpha'|^3}$$

Use the formula for k, we have

$$\tau = \frac{<\alpha' \times \alpha'', \alpha''' >}{|\alpha' \times \alpha''|^2}.$$

2. Geometric meaning of curvature

Proposition 2. Let $\alpha(s)$ be a plane curve parametrized by arc length defined on (a, b). Let $s_0 \in (a, b)$. Suppose $\kappa(s_0) > 0$. Then the following are true:

- (i) For any $s_1 < s_2 < s_3$ sufficiently close to s_0 , $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ are not collinear.
- (ii) For s₁ < s₂ < s₃ sufficiently close to s₀ so that α(s₁), α(s₂), α(s₃) are not collinear, let c(s₁, s₂, s₃) be the center of the unique circle C(s₁, s₂, s₃) passing through α(s₁), α(s₂), α(s₃). As s₁, s₂, s₃ → s₀, C(s₁, s₂, s₃) will converge to a circle passing through α(s₀) tangent to α at α(s₀) with radius 1/κ(s₀)

Proof. (i) Suppose $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ lie on a straight line. Then

$$\langle \alpha(s_i) - \vec{v}, \vec{n} \rangle = 0$$

for some constant vectors \vec{v}, \vec{n} with $|\vec{n}| = 1$, for i = 1, 2, 3. Let $f(s) = \langle \alpha(s) - \vec{v}, \vec{n} \rangle$. Then $f(s_i) = 0$ for i = 1, 2, 3. Hence $f'(\xi_1) = f'(\xi_2) = 0$ for some $s_1 < \xi_1 < s_2 < \xi_2 < s_3$ and $f''(\eta) = 0$ for some $\xi_1 < \eta < \xi_2$. That is:

$$\begin{cases} \langle \alpha'(\xi_1), \vec{n} \rangle = \langle \alpha'(\xi_2), \vec{n} \rangle = 0; \\ \langle \alpha''(\eta), \vec{n} \rangle = 0. \end{cases}$$

As $s_1, s_2, s_3 \to s_0$, $\vec{n} \to N(s_0)$ and $\alpha''(\eta) = \kappa(s_0)N(s_0)$. This implies $\kappa(s_0) = 0$. Contradiction.

(ii) Let $C(s_1, s_2, s_3)$ be given by

$$||\mathbf{x} - c|| = r.$$

where $c = c(s_1, s_2, s_3)$.

Let $h(s) = ||\alpha(s) - c||^2$. Then $h(s_i) = r^2$ for i = 1, 2, 3. Hence $h'(\xi_1) = h'(\xi_2) = 0$ for some $s_1 < \xi_1 < s_2 < \xi_2 < s_3$ and $h''(\eta) = 0$ for some $\xi_1 < \eta < \xi_2$. Hence

$$\begin{cases} \langle \alpha'(\xi_1), \alpha(\xi_1) - c \rangle &= \langle \alpha'(\xi_2), \alpha(\xi_2) - c \rangle = 0; \\ \langle \alpha''(\eta), \alpha(\eta) - c \rangle + 1 &= 0. \end{cases}$$

If $c \to c_{\infty}$ for some sequence $s_1 < s_2 < s_3 \to s_0$, then

$$\langle \alpha'(s_0), \alpha(s_0) - c_{\infty} \rangle = 0, \quad \langle \alpha''(s_0), \alpha(s_0) - c_{\infty} \rangle = -1$$

So $c_{\infty} - \alpha(s_0) = \frac{1}{\kappa(s_0)} N(s_0)$. From this the result follows.

The limiting circle is called the *osculating circle*.

Parametrized surface

1. REGULAR PARAMETRIZED SURFACE PATCH

Let $U \subset \mathbb{R}^2$ be an open set with coordinates (u^1, u^2) .

Definition 1. A regular parametrized surface patch or simply a regular surface is a map:

$$\mathbf{X}: U \to \mathbb{R}^3$$

such that the following are true:

- (rsp1) X is smooth and injective.
- (rsp2) **X** is full rank: $\mathbf{X}_1 = \frac{\partial \mathbf{X}}{\partial u^1}$ and $\mathbf{X}_2 = \frac{\partial \mathbf{X}}{\partial u^2}$ are linearly independent, for any $(u^1, u^2) \in U$.

Remarks:

• Let V be an open set in \mathbb{R}^2 and let $\phi : V \to U$ be an orientation preserving diffeomorphism. Let $\mathbf{Y} = \mathbf{X} \circ \phi$,

$$\mathbf{Y}: V \to \mathbb{R}^3.$$

We will not distinguish the two surfaces.

• Condition (rsp2) is equivalent to the following fact that $d\mathbf{X}$ has rank 2 everywhere. This is also equivalent to (i): $\mathbf{X}_1 \times \mathbf{X}_2 \neq \beta 0$ or (ii): one of the following matrices is nonsingular:

$$\left(\begin{array}{cc} x_1 & x_2 \\ y_1 & y_2 \end{array}\right), \left(\begin{array}{cc} y_1 & y_2 \\ z_1 & z_2 \end{array}\right), \left(\begin{array}{cc} z_1 & z_2 \\ x_1 & x_2 \end{array}\right).$$

• X is injective means that the surface has no self intersection.

2. Examples

Proposition 1. Let $f : U \to \mathbb{R}$ be a smooth function on an open set $U \subset \mathbb{R}^2$. Then the graph of f defined by the following is can be realized as a regular surface:

$$graph(f) = \{(x, y, f(x, y)) | (x, y) \in U\}$$

Example 1: A plane given by the graph of f(x, y) = ax + by + c with constants a, b, c. Or more general: $\mathbf{X}(u^1, u^2) = \mathbf{a}_0 + u^1 \mathbf{b}_1 + u^2 \mathbf{b}_2$ with $\mathbf{a}_0, \mathbf{b}_1, \mathbf{b}_2$ being constant vectors and $\mathbf{b}_1, \mathbf{b}_2$ are linearly independent.

Example 2: (Surface of revolution) Let x = f(v), z = g(v) be a curves in x-z plane with f > 0, a < v < b. $\mathbf{X}(u, v) = (f(v) \cos u, f(v) \sin u, g(v))$.

Example 3 (Ruled surface): Let α , $\mathbf{w} : (a, b) \to \mathbb{R}^3$, be two smooth curves. $\mathbf{X}(t, v) = \alpha(t) + v\mathbf{w}(t)$.

Proposition 2. Let U be an open set in \mathbb{R}^3 and let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function. Suppose a is a regular value of f. (That is: if $f(\mathbf{x}) = a$, then $\nabla f(\mathbf{x}) \neq \mathbf{0}$.) Then for any $\mathbf{x}_0 = (x_0, y_0, z_0) \in U$ with $f(\mathbf{x}_0) = a$, there is an open set O in \mathbb{R}^3 containing \mathbf{x}_0 such that $O \cap \{f(\mathbf{x}) = a\}$ can be realized as a regular surface.

Proof. (Sketch) Let $\mathbf{x}_0 = (x_0, y_0, z_0) \in U$ with $f(\mathbf{x}_0) = a$. Since $\nabla f(\mathbf{x}_0) \neq 0$, we may assume that $f_z(\overline{\zeta_0}) \neq 0$. Define a map

$$F: U \to \mathbb{R}^3$$

by F(x, y, z) = (u, v, w) with u = x, v = y, w = f(x, y, z). Then at \mathbf{x}_0 ,

$$dF = \left(\begin{array}{rrrr} 1 & 0 & 0\\ 0 & 1 & 0\\ f_x & f_y & f_z \end{array}\right)$$

which is nonsingular. Now $F(\mathbf{x}_0) = (x_0, y_0, a)$. There are open sets U of \mathbf{x}_0 and V of (x_0, y_0, a) such that $F : U \to V$ is a diffeomorphism by the inverse function theorem.

Now

$$F(U \cap \{f = a\}) = \{(u, v, w) \in V | \ w = a\} := O$$

O can be considered as an open set in $\mathbb{R}^2.$ Consider the parametrized surface

$$\mathbf{X}: O \to \mathbb{R}^3$$

with $\mathbf{X}(u, v) = F^{-1}(u, v, a)$. This regular surface and the image is just $U \cap \{f = a\}$.

3. Differential and Inverse function theorem

Let $F : U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a smooth map from an open set U to \mathbb{R}^n , $F(\mathbf{x}) = \mathbf{y}(\mathbf{x}) =$ where $\mathbf{x} = (x^1, \dots, x^n)$, $\mathbf{y} = (y^1, \dots, y^m)$. Let $\mathbf{x}_0 = (x_0^1, \dots, x_0^n) \in U$. The Jacobian matrix of F at \mathbf{x}_0 is the $m \times n$ matrix

$$dF_{\mathbf{x}_0} = \left(\frac{\partial y^i}{\partial x^j}(\mathbf{x}_0)\right).$$

Suppose **v** is a vector in \mathbb{R}^n represented by a column, then

$$dF_{\mathbf{x}_0}(\mathbf{v}) = \left(\frac{\partial y^i}{\partial x^j}(\mathbf{x}_0)\right)\mathbf{v}.$$

Theorem 1. (Inverse Function Theorem) Let $F : U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a smooth map. Suppose $F(\mathbf{x}_0) = \mathbf{y}_0$ and $dF_{\mathbf{x}_0}$ is nonsingular. Then there exist open sets $U \supset V \ni \mathbf{x}_0$ and $W \ni \mathbf{y}_0$, such that F is a diffeomorphism from V to W. That is to say, $F: V \to W$ is bijective and F^{-1} is also smooth on W.

Proof. (Sketch) May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$. Then

$$F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x})$$

here $F(\mathbf{x})$ and \mathbf{x} are considered as a column vectors with

$$|G(\mathbf{x}_1) - G(\mathbf{x}_2)| = O(|\mathbf{x}_1 - \mathbf{x}_2|^2)$$

near **0**. Hence for any $\epsilon > 0$, we can find $\delta > 0$ such that if $\mathbf{x}_1, \mathbf{x}_2 \in B(\mathbf{0}, \delta) = \{ |\mathbf{x}| < \delta \},\$

$$|F(\mathbf{x}_1) - F(\mathbf{x}_2)| \ge |A(\mathbf{x}_1 - \mathbf{x}_2)| - \epsilon |\mathbf{x}_1 - \mathbf{x}_2|$$

From this we conclude that F is one-one in $B(\mathbf{0}, \delta)$. (Why?) Let $\mathbf{b} \in \mathbb{R}^n$. Define

$$\mathbf{a}_0 = A^{-1}\mathbf{b}, \ \mathbf{a}_1 = A^{-1}(\mathbf{b} - G(\mathbf{a_0})), \dots, \ \mathbf{a}_{k+1} = A^{-1}(\mathbf{b} - G(\mathbf{a_k})), \dots$$

There is $\rho > 0$, such that if $|\mathbf{b}| < \rho$, the above is well-defined:

- $|\mathbf{a}_0| < \frac{1}{2}\delta$, if $\rho > 0$ is small enough.
- Suppose $|\mathbf{a}_k| < \frac{1}{2}\delta$, then \mathbf{a}_{k+1} can be defined and

$$|\mathbf{a}_{k+1}| \le C(\rho + |\mathbf{a}_k|^2) \le C(\rho + \frac{1}{4}\delta^2) < \frac{1}{2}\delta$$

if $\rho > 0, \delta > 0$ are small.

Now

$$|\mathbf{a}_{k+1} - \mathbf{a}_k| \le |A^{-1}G(\mathbf{a}_k - \mathbf{a}_{k-1}) \le C\delta|\mathbf{a}_k - \mathbf{a}_{k-1}|.$$

So $\mathbf{a}_k \to \mathbf{a}$ which is in $B(\mathbf{0}, \delta)$ and $F(\mathbf{a}) = \mathbf{b}$.

4. Assignment

Assignment 2, Due Friday, 21/9/2018

(1) Show that part of the hyperboloid of one sheet:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

can be realized as a regular surface surface patch with following is a parametrization:

 $\mathbf{X}(u, v) = (a \cosh u \cos v, b \cosh u \sin v, c \sinh u).$

Find the largest domain on (u, v) plane such that **X** is one to one.

(2) Let \mathbf{S}^1 be the unit circle $x^2 + y^2 = 1$. Let $\alpha(s), 0 \le s \le 2\pi$, be a parametrization of \mathbf{S}^1 by arc length. Let $\mathbf{w}(s) = \alpha'(s) + e_3$ where $e_3 = (0, 0, 1)$. Show the ruled surface

$$\mathbf{X}(s,v) = \alpha(s) + v\mathbf{w}(s)$$

with $-\infty < v < \infty$, is part of the hyperboloid $x^2 + y^2 - z^2 = 1$. Is **X** a surjective map to the hyperboloid? Is **X** injective? Does **X** has rank 2 for $0 < s < 2\pi$, $v \in \mathbb{R}$?

- (3) Find a parametrization for the catenoid, which is obtained by revolving the catenary $y = \cosh x$ about the x-axis.
- (4) The Enneper's surface is defined by

$$\mathbf{X}(u,v) = (u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2).$$

Show that this a regular surface patch for $u^2 + v^2 < 3$. Also find two points on the circle $u^2 + v^2 = 3$ such that they have the same image under **X**.

4