
More on curvature and torsion

1. Curvature and torsion in general parameter

Proposition 1. Let α(t) be a regular curve with nonzero curvature.
Then the curvature and torsion are given by:{

κ = |α′×α′′|
|α′|3

τ = <α′×α′′,α′′′>
|α′×α′′|2 .

Here ′ always means differentiation with respect to t.

Proof. Let α(t) be a regular curve with nonzero curvature. Then

α′ = |α′|T,

(1) α′′ = κ|α′|2N + |α′|−1 < α′, α′′ > T.

Hence
< α′′, α′′ >= κ2|α′|4 + |α′|−2 < α′, α′′ >2,

and

κ2 =
< α′′, α′′ >< α′, α′ > − < α′, α′′ >2

|α′|6

=
|α′ × α′′|2

|α′|6
.

To compute τ , note that

α′′′ = κ(−kT + τB)|α′|3 + f(t)T + g(t)N

for some function f and g. (Why?). So

τ =
1

κ

< α′′′, B >

|α′|3
.

Use (1)

B = T ×N

=
T × α′′

k|α′|2

=
α′ × α′′

k|α′|3

Use the formula for k, we have

τ =
< α′ × α′′, α′′′ >

|α′ × α′′|2
.
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2. Geometric meaning of curvature

Proposition 2. Let α(s) be a plane curve parametrized by arc length
defined on (a, b). Let s0 ∈ (a, b). Suppose κ(s0) > 0. Then the following
are true:

(i) For any s1 < s2 < s3 sufficiently close to s0, α(s1), α(s2), α(s3)
are not collinear.

(ii) For s1 < s2 < s3 sufficiently close to s0 so that α(s1), α(s2), α(s3)
are not collinear, let c(s1, s2, s3) be the center of the unique cir-
cle C(s1, s2, s3) passing through α(s1), α(s2), α(s3). As s1, s2, s3 →
s0, C(s1, s2, s3) will converge to a circle passing through α(s0)
tangent to α at α(s0) with radius 1/κ(s0)

Proof. (i) Suppose α(s1), α(s2), α(s3) lie on a straight line. Then

⟨α(si)− v⃗, n⃗⟩ = 0

for some constant vectors v⃗, n⃗ with |n⃗| = 1, for i = 1, 2, 3. Let f(s) =
⟨α(s)− v⃗, n⃗⟩. Then f(si) = 0 for i = 1, 2, 3. Hence f ′(ξ1) = f ′(ξ2) = 0
for some s1 < ξ1 < s2 < ξ2 < s3 and f ′′(η) = 0 for some ξ1 < η < ξ2.
That is: {

⟨α′(ξ1), n⃗⟩ = ⟨α′(ξ2), n⃗⟩ = 0;
⟨α′′(η), n⃗⟩ = 0.

As s1, s2, s3 → s0, n⃗ → N(s0) and α′′(η) = κ(s0)N(s0). This implies
κ(s0) = 0. Contradiction.

(ii) Let C(s1, s2, s3) be given by

||x− c|| = r.

where c = c(s1, s2, s3).
Let h(s) = ||α(s) − c||2. Then h(si) = r2 for i = 1, 2, 3. Hence

h′(ξ1) = h′(ξ2) = 0 for some s1 < ξ1 < s2 < ξ2 < s3 and h′′(η) = 0 for
some ξ1 < η < ξ2. Hence{

⟨α′(ξ1), α(ξ1)− c⟩ = ⟨α′(ξ2), α(ξ2)− c⟩ = 0;
⟨α′′(η), α(η)− c⟩+ 1 = 0.

If c → c∞ for some sequence s1 < s2 < s3 → s0, then

⟨α′(s0), α(s0)− c∞⟩ = 0, ⟨α′′(s0), α(s0)− c∞⟩ = −1

So c∞ − α(s0) =
1

κ(s0)
N(s0). From this the result follows.

�
The limiting circle is called the osculating circle.



Parametrized surface

1. regular parametrized surface patch

Let U ⊂ R2 be an open set with coordinates (u1, u2).

Definition 1. A regular parametrized surface patch or simply a regular
surface is a map:

X : U → R3

such that the following are true:

(rsp1) X is smooth and injective.
(rsp2) X is full rank: X1 =

∂X
∂u1 andX2 =

∂X
∂u2 are linearly independent,

for any (u1, u2) ∈ U .

Remarks:

• Let V be an open set in R2 and let ϕ : V → U be an orientation
preserving diffeomorphism. Let Y = X ◦ ϕ,

Y : V → R3.

We will not distinguish the two surfaces.
• Condition (rsp2) is equivalent to the following fact that dX has
rank 2 everywhere. This is also equivalent to (i): X1×X2 ̸= β0
or (ii): one of the following matrices is nonsingular:(

x1 x2

y1 y2

)
,

(
y1 y2
z1 z2

)
,

(
z1 z2
x1 x2

)
.

• X is injective means that the surface has no self intersection.

2. Examples

Proposition 1. Let f : U → R be a smooth function on an open set
U ⊂ R2. Then the graph of f defined by the following is can be realized
as a regular surface:

graph(f) = {(x, y, f(x, y))| (x, y) ∈ U}.

Example 1: A plane given by the graph of f(x, y) = ax+by+c with
constants a, b, c. Or more general: X(u1, u2) = a0 + u1b1 + u2b2 with
a0, b1,b2 being constant vectors and b1,b2 are linearly independent.

Example 2: (Surface of revolution) Let x = f(v), z = g(v) be a
curves in x−z plane with f > 0, a < v < b. X(u, v) = (f(v) cos u, f(v) sin u, g(v)).

Example 3 (Ruled surface): Let α,w : (a, b) → R3, be two smooth
curves. X(t, v) = α(t) + vw(t).
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Proposition 2. Let U be an open set in R3 and let f : R3 → R be
a smooth function. Suppose a is a regular value of f . (That is: if
f(x) = a, then ∇f(x) ̸= 0.) Then for any x0 = (x0, y0, z0) ∈ U
with f(x0) = a, there is an open set O in R3 containing x0 such that
O ∩ {f(x) = a} can be realized as a regular surface.

Proof. (Sketch) Let x0 = (x0, y0, z0) ∈ U with f(x0) = a. Since
∇f(x0) ̸= 0, we may assume that fz(ζ̄0) ̸= 0. Define a map

F : U → R3

by F (x, y, z) = (u, v, w) with u = x, v = y, w = f(x, y, z). Then at x0,

dF =

 1 0 0
0 1 0
fx fy fz


which is nonsingular. Now F (x0) = (x0, y0, a). There are open sets U
of x0 and V of (x0, y0, a) such that F : U → V is a diffeomorphism by
the inverse function theorem.

Now

F (U ∩ {f = a}) = {(u, v, w) ∈ V | w = a} := O.

O can be considered as an open set in R2. Consider the parametrized
surface

X : O → R3

with X(u, v) = F−1(u, v, a). This regular surface and the image is just
U ∩ {f = a}.

�

3. Differential and Inverse function theorem

Let F : U ⊂ Rn → Rm be a smooth map from an open set U to
Rn, F (x) = y(x) = where x = (x1, . . . , xn), y = (y1, . . . , ym). Let
x0 = (x1

0, . . . , x
n
0 ) ∈ U . The Jacobian matrix of F at x0 is the m × n

matrix

dFx0 =

(
∂yi

∂xj
(x0)

)
.

Suppose v is a vector in Rn represented by a column, then

dFx0(v) =

(
∂yi

∂xj
(x0)

)
v.

Theorem 1. (Inverse Function Theorem) Let F : U ⊂ Rn → Rn

be a smooth map. Suppose F (x0) = y0 and dFx0 is nonsingular. Then
there exist open sets U ⊃ V ∋ x0 and W ∋ y0, such that F is a
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diffeomorphism from V to W . That is to say, F : V → W is bijective
and F−1 is also smooth on W .

Proof. (Sketch) May assume that x0 = 0 = y0. Let A = dFx0 . Then

F (x) = Ax+G(x)

here F (x) and x are considered as a column vectors with

|G(x1)−G(x2)| = O(|x1 − x2|2)

near 0. Hence for any ϵ > 0, we can find δ > 0 such that if x1,x2 ∈
B(0, δ) = {|x| < δ},

|F (x1)− F (x2)| ≥ |A(x1 − x2)| − ϵ|x1 − x2|

From this we conclude that F is one-one in B(0, δ). (Why?)
Let b ∈ Rn. Define

a0 = A−1b, a1 = A−1(b−G(a0)), . . . , ak+1 = A−1(b−G(ak)), . . .

There is ρ > 0, such that if |b| < ρ, the above is well-defined:

• |a0| < 1
2
δ, if ρ > 0 is small enough.

• Suppose |ak| < 1
2
δ, then ak+1 can be defined and

|ak+1| ≤ C(ρ+ |ak|2) ≤ C(ρ+
1

4
δ2) <

1

2
δ

if ρ > 0, δ > 0 are small.

Now

|ak+1 − ak| ≤ |A−1G(ak − ak−1) ≤ Cδ|ak − ak−1|.

So ak → a which is in B(0, δ) and F (a) = b. �

4. Assignment

Assignment 2, Due Friday, 21/9/2018

(1) Show that part of the hyperboloid of one sheet:

x2

a2
+

y2

b2
− z2

c2
= 1

can be realized as a regular surface surface patch with following
is a parametrization:

X(u, v) = (a coshu cos v, b coshu sin v, c sinhu).

Find the largest domain on (u, v) plane such that X is one to
one.
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(2) Let S1 be the unit circle x2 + y2 = 1. Let α(s), 0 ≤ s ≤ 2π, be
a parametrization of S1 by arc length. Let w(s) = α′(s) + e3
where e3 = (0, 0, 1). Show the ruled surface

X(s, v) = α(s) + vw(s)

with −∞ < v < ∞, is part of the hyperboloid x2+ y2− z2 = 1.
Is X a surjective map to the hyperboloid? Is X injective? Does
X has rank 2 for 0 < s < 2π, v ∈ R?

(3) Find a parametrization for the catenoid, which is obtained by
revolving the catenary y = cosh x about the x-axis.

(4) The Enneper’s surface is defined by

X(u, v) = (u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2).

Show that this a regular surface patch for u2 + v2 < 3. Also
find two points on the circle u2 + v2 = 3 such that they have
the same image under X.
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